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PEEFACE.

IN the following work I have endeavoured to account for the manifold

phenomena of light as electromagnetic phenomena, deriving the same

from the fundamental differential equations for electromagnetic dis-

turbances. I have treated in Part I. the more familiar phenomena

that can be explained by Maxwell's theory, and have reserved for

Part II. those for which his theory fails to offer a satisfactory

explanation.

In the treatment of the subject-matter, I have laid more stress

on a rigorous development of the fundamental laws of optics than

on the derivation of the many consequences or secondary laws, that

can be deduced from the former by familiar principles, and have

little to do with our conception of the nature of light; for the

consequences or secondary laws that can thus be deduced I refer

the reader to the various text-books on optics, in which the same are

most extensively treated. I have also omitted a description of all

experiments on the subject-matter treated and have referred to

empirical facts only where a comparison with the theoretical results

has seemed of interest.

At the beginning of each chapter I have endeavoured to give a

brief historical sketch of the subject-matter treated
;
and each chapter

has been developed as independently of the preceding ones, as the

treatment of the subject has allowed. Examples pertaining to the

matter treated in the text have been added at the end of each

chapter; these have been of great service to me in the general

treatment of the principles set forth in the text, and I hope they

may prove as useful to the reader.



VI PREFACE.

The spherical waves and the so-called primary and secondary

waves, which have been so extensively treated in the first four chapters,

are perhaps only of theoretical interest. One of my chief reasons for

the elaborate treatment of this peculiar class of waves has been to

indicate another fertile field of research offered by Maxwell's equations.

For those interested only in the more familiar phenomena of electro-

magnetic wave-motion those portions of the text can be omitted.

In the treatment of the familiar problems on optics I have made

free use of all sources with which I am acquainted, but in particular

of Preston's "Theory of Light," Helmholtz's "Vorlesungen iiber die

Electromagnetische Theorie des Lichts," Volkmann's "
Vorlesungen

iiber die Theorie des Lichtes," and Drude's " Lehrbuch der Optik."

I have to return my best thanks to Prof Dr. K. Fischer, Munich,

for many valuable suggestions, as well as for a most careful revision

of the proofs.

C. E. CUERY.

MUNICH, January, 1905.
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CHAPTER I.

INTRODUCTION.

Finite Velocity of Light. Until Roemer's discovery of the finite

velocity of propagation of light from his observations of the satellites of

Jupiter, the many theories and speculations offered for the explanation

of its manifold phenomena were of a most varied and even extravagant
nature. The further discovery of the aberration of light by Bradley
some fifty years later not only confirmed the great truth revealed by
his Danish predecessor, but showed that the light of the fixed stars

travelled with the same velocity as that reflected from the sun. Finally,

about the middle of the last century the ingenious methods devised by
Fizeau and Foucault for the direct determination of the velocity of

light within a room left no further doubt as to its finite velocity.

The discoveries of Roemer and Bradley not only gave us another

example of the continuity of nature, but they opened up a new era

in the history of optics.

Two Modes of Transmission. If we_accgptthe velocity of light as

finite and the phenomena of vision as a manifestation of mechanical

energy transmitted from the luminous object to the retina of the eye,

we can evidently conceive only two modes of its transmission : either

by material particles or corpuscles, which are projected at high velo-

cities (that of light) from the luminous body, strike the retina of the

eye and impart their kinetic energy to it
;
or by means of a medium,

as a fluid, which carries the energy, imparted to it by the luminous

body in the form of waves or oscillations, from one particle to the

next, until that motion finally reaches the observer, and is transmitted

to the retina of his eye in the form of a similar oscillation, which calls

forth the phenomenon of vision; this latter mode of transmission is

characterised by an entire absence of any passage of material particles

between the luminous object and the observer. The former mode of

A
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transmission forms the fundament of the so-called "corpuscular" or

" emission
"
theories of light, the latter mode that of the wave theory.

Emission Theory. Tho-^mission theories are embodied in the theory

first propounded by Newton and modified by him and others to sur-

mount the many difficulties encountered in a satisfactory explanation

of empirical laws. j_jfeeS"formidable difficulties are. met here at the

very outset, amon^ others the assumption of such enormous velocities

as that of light for material particles ;
for particles travelling at such

high velocities would impart an enormous momentum to the object

they strike, and thus set it in motion; but observations have failed

to detect any such motion,* even when the supposed particles are

brought to a focus on the given object by means of a lens or mirror.

Moreover, although the law of reflection is evidently the same for

elastic particles and beams of light, it is easy to show that the former

in passing from one medium into another obey quite different laws

from those for the refraction of light : according to the former the

velocity of propagation increases with the density of the medium, a

law which is in direct disagreement with all empirical laws of light.!

Its Modifications. In order to make the material particles behave

according to the empirical laws of refraction, it was found necessary
not only to endow them with many new properties but actually to

assume first the presence of an intervening medium capable of being
set into an oscillatory motion and then certain reciprocal actions

between that medium its oscillations or waves and the particles

themselves. The result of these many modifications was that Newton's

emission theory finally assumed all the aspects of the wave theory

proper ;
in its ultimate form it was, in fact, known as Newton's wave

theory of light; it differs from the wave theory proper only in the

assumption of the presence of the material particles themselves and the

laws regulating the action between the same and the waves of the

medium. Such a complication of ideas, especially where nothing is to

be gained, alone justifies us in abandoning Newton's wave theory and

accepting in its place the simpler one, the wave theory proper.

Wave Theory. Huygens must undoubtedly be regarded as the

founder of the wave theory proper ;
not alone because he was the first

to state it in explicit form, but because he was able to offer a satis-

factory explanation for the greater part of the phenomena then known
to the world, namely those of reflection, refraction, and double refrac-

tion (in crystals). Cjhe difficulty rfrygcji" encountered in attempting to

explain the rectilinear propagation of light and the presence of shadows

*See, however, P. Lebedew :

"
Untersuchungen ueber die Driickkraefte des

Lichts," Drudi's Annalen 6, 1901, vol. 11, pp. 433-458.
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(i
I' T^TTprnEiiY ), 1 1 1 1 1 1 1 accounts for the little recognition accorded ifils

theory when first stated and its entire neglect for almost a century ;
it

first received attention upon Young's discovery of the principle of inter-

ference and Fre'snel's confirmation of the same by experiment. These

phenomena of interference dealt perhaps the last blow to the emission

theory, since the presence of an intervening medium capable of being

set into an oscillatory motion then became not only the essential but

the predominating feature in every theory of light. Finally, the last

formidable difficulty besetting the wave theory, the explanation of the

phenomenon of polarisation, was removed by Fresnel's assumption that

the light waves were not longitudinal like those of sound, as had

hitherto been supposed, but transverse, that is, that the vibrations took

place at right angles to their direction of propagation ; the rectilinear

propagation of light and the presence of shadows soon after found a

satisfactory explanation"^. Chapter V.).

The Ether. The medium assumed for the propagation of light is

termed " ether." Since ether evidently pervades not only terrestial

but interstellar space, it cannot be identical with our atmosphere.

Moreover, we must assume that ether pervades all transparent bodies,

but, as the behaviour of light in such bodies is different from its

behaviour in the air, that the ether pervading the former is different

from that of the air
;
that is, that the properties to be assigned the

ether differ for different bodies or media. These properties are

evidently determined by certain unknown actions (resistances) between

the material particles of the given body and the particles (elements)
of the ether pervading that body ; they thus differ for different bodies.

Consequently, opaque bodies could also be conceived as permeated

by ether, and thus ether itself as pervading not only all space, both

terrestial and interstellar, but all bodies
;
that is, it may be regarded

as a continuous medium.

The Elastic Solid Ether. Many ethers have already been offered

for the explanation of the phenomena of light, and many more could

readily be conceived that might give similar satisfaction. This free-

dom of choice is due chiefly to our ignorance of the properties of

the ether sought, and our consequent inability to form any concrete

conception of it.* We have observed above that the phenomena of

interference and polarisation can alone be explained satisfactorily by
an ether that is capable of transmitting transverse oscillations ;

one of

the first properties to be demanded of a luminiferous ether is, there-

fore, that it is capable of being set into transverse vibrations, and of

transmitting those vibrations further. Such ethers resemble now the

*Cf. Curry : Theory of Electricity and Magnetism, p. 4.
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solid rather than the fluid, since the former alone is capable of being

set into transverse vibrations; hence the termination "elastic solid

ether," that particular ether which possesses not only the required

property of transmitting transverse oscillations, but other properties

common to the solid.* The elastic solid theory of light was soon

universally accepted ;
and it remained the accepted theory till almost

the end of the last century, until Hertz's great discoveries, which

revealed the striking similarity between the electric waves and those

of light, suggested certain modifications in the constitution of the

elastic solid ether; we could thus designate this new luminiferous

ether as the "
electromagnetic ether." The necessary modifications to

be made in the elastic solid ether were naturally such that the

phenomena of light already explained by it were readily and simi-

larly deduced from the electromagnetic ether. Those text-books that

treat light from the elastic solid standpoint have not, therefore, become

entirely obsolete; on the other hand, they may be used to great

advantage by the student, and will often be referred to in the present

treatise. For the fundamental differences between the elastic solid

and the electromagnetic ethers, I refer the student to Section 1 of my
Theory of Electricity and Magnetism.

Maxwell's Ether. We shall accept Maxwell's equations as our

definition of the electromagnetic or luminiferous. ether, and, as in

my Theory of Electricity and Magnetism, I shall leave it to the student

to form any conception of the ether thus defined, that is consistent

with the different properties of these equations. There are, indeed,

other ethers defined by other systems of equations ;
some may explain

certain phenomena, or even groups of phenomena, as satisfactorily

as Maxwell's equations do, others are more general and thus allow

greater freedom in the choice of the properties that may be assigned

them, but none have stood the severe test of twenty-five years or

more that Maxwell's have. This alone surely justifies us in accepting
Maxwell's ether as the seat and transmitter of not only the electric

and magnetic energy, but that of light.

Helmholtz's Ether. Helmholtz's equations of electricity and magne-
tism define an ether that is more general than Maxwell's, but at the

same time includes the same as particular case (e
=

0, k arbitrary f) ;

it also includes other particular ethers, which differ essentially from

Maxwell's
; many of these have been more or less extensively investi-

gated with regard not only to the electric phenomena, but to those of

light. Tumlirz makes use of such a particular system of equations

*Cf. Curry : Theory of Electricity and Magnetism, p. 6.

tCf. Ibid., p. 356.
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(k
=

0) in his book on the electromagnetic theory of light,* but the

value of his book is so greatly impaired by an unfortunate choice of

surface conditions, that it is impossible, before examining his equations
in detail, to pass judgment on their real value or ability to explain
the phenomena treated. Helmholtz's ether is more general than

Maxwell's, chiefly in that it is capable of transmitting not only trans-

verse, but longitudinal oscillations
;

the latter are represented by a

certain function <f that appears in Helmholtz's equations. A pecu-

liarity of Helmholtz's ether is that its property of being able to

transmit longitudinal oscillations is quite independent of certain other

of its properties and vice versa, provided the given medium be homo-

geneous, that is, its medium-constants e and K constants, in which case

it should be possible to eliminate this property or function < from

Helmholtz's equations ;
this has, in fact, been accomplished by Boltz-

rnann by means of certain substitutions.^ On the other hand, the

possibility of eliminating <$> revealed its independence to the other

functions. Helmholtz's ether could thus be conceived here as defined

by two independent systems of equations, the one representing its

longitudinal oscillations and the other its other properties. On making
Boltzmann's substitutions we find that Helmholtz's equations reduce to

Maxwell's. Since now, as we know, Maxwell's ether is capable of

transmitting only transverse oscillations we confine this statement to

the ordinary waves, whose intensity varies inversely as the square of

the distance from the source we can thus modify our present concep-

tion of Helmholtz's ether, and conceive it as defined by two

independent systems of equations, the one representing its longi-

tudinal and the other its transverse oscillations. But, as all attempts
to explain the phenomena of light by longitudinal oscillations have

proved fruitless, whereas the assumption that light is a manifestation

of transverse oscillations has become empirical now-a-days, only the

latter oscillations would concern us here
;
that is, only that system of

equations, which represent the transverse oscillations, need be examined.

On account of the identity between these equations and Maxwell's, it is

therefore immaterial, as far as the derivation and explanation of the

phenomena of light are concerned, whether we regard Maxwell's or

Helmholtz's ether as the seat and transmitter of light, and treat the

different phenomena according to the equations of the former or those

of the latter
; but, for brevity, we shall employ the more familiar

equations of Maxwell.

* Die elektromagnetische Theorie des Lichtes, Leipzig, 1883.

t Cf . Curry : Theory of Electricity and Magnetism, xl.

^ Cf. Ibid., p. 401. Cf. Ibid., p. 402.
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Fundamental Equations. The phenomena of light with which we

are acquainted are confined almost exclusively to the transparent

bodies, as air, glass, crystals, etc. the behaviour of light on the

surface of opaque bodies, as the metals, is perhaps the only exception

of any importance. Since now transparent bodies are bad conductors,

we shall thus have to seek the phenomena of light, with the above

exception, in Maxwell's equations for insulators and dielectrics ;
these

are

and

dt dz dy

dy da.

^~dt
=
dx~~dz

47rdZ_da d/3

# dt dy dx

4?r da dR dQ.

_L
47r db_dP _dR
VQ dt dz dx

47T dc = dQ_dP
v dt dx dy ;

.(2)t

where P, Q, E and a, j3, y denote the components of the electric and

magnetic forces respectively along the x, y, z axes, A', Y, Z and a, b, c

their respective moments, and V
Q
the velocity of propagation of electro-

magnetic disturbances (light) in any standard medium as air.

Isotropic bodies are thereby characterised that the magnitude of the

electric moment (displacement) is independent of the direction of the

force acting ;
we can thus write

(3) t

where D denotes the electric inductive capacity of the given medium.
The analogous relations between the components of the magnetic
moment and those of the magnetic force, namely

M M n M

where M denotes the magnetic inductive capacity or the magnetic
permeability of the medium, are assumed to hold for all media, as no

*Cf. Curry : Theory of Electricity and Magnetism, formulae (9, ii.) and xliii.

tCf. Ibid., formulae (10, ii.) and xliii. jCf. Ibid.
t xiv.

Cf. Ibid., xxv.



INTRODUCTION.

appreciable variation with regard to direction has yet been detected in

the value of this quantity M in one and the same medium.

Maxwell's Equations for Isotropic Dielectrics. By the relations (3)

and (4) Maxwell's equations can be written as follows for isotropic

media :

and

dt dz dy

dQ _dy _da
dt dx ~dz

v dt dy dx

Mda_dR_dQ
V
Q
dt dy dz

Md/3_dP_dR
vn dt dz dx

(6)*

_
v dt dx d

Aeolotropic Media. Media, in which the electric moment varies

with the direction of the electric force, are called anisotropic or aeolo-

tropic ;
the only such, with which we are familiar, are certain crystals,

as the Iceland spar. In such media there are, in general, three direc-

tions, and these are at right angles to each other, along each of which

the electric inductive capacity becomes either a maximum or a mini-

mum
;
these directions are known as the principal axes of the crystal.

If we choose these axes as coordinate-axes and denote the values of D
along the same by Dv D^ and Z>

3,
we must evidently replace the above

relations (3) by the following :

(7)

by which Maxwell's equations (1) can be written

D^ dP dft dy

VQ dt
~

dz dy

D
2 dQ_dy da
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It is not, however, always convenient to choose the principal axes of

the crystal as coordinate-axes (cf. Chapter VIII.) ;
in which case X, Y, Z

of formulae (1) are assumed * to be given by the expressions

(9)t

where these D's are the following functions of Dv D2,
D

3,
the values of

D along the principal axes of the crystal, and the cosines of the angles

between the principal and the coordinate-axes :

D
ll
= D

l
cos2

(z', x) +D2
cos2

(z', y) + Ds cos2 (z', z),

D
12
= D

l
cos (of, x) cos

(/', x) +D2
cos (x', y) cos (y

f

, y) + D3
cos

(a;', z) cos (y',z),

etc.,

where x, y, z and x', y', z' denote the coordinate and principal axes

respectively. For x= x'
9 y = y',

and z = z, it is evident that

and ^i
=A DK = DV A* = ^3;

by which the general formulae for aeolotropic media reduce to formulae (8).

Non-homogeneous Media. With the exception of our atmosphere,

there are few non-homogeneous media within which phenomena of light

have been observed; the treatment of the behaviour of light in such

media would, however, meet with no serious difficulties
;
the phenomena

of refraction, absorption, etc., of our atmosphere can be quite simply

deduced, only an exacter knowledge of the law of variation of its

density would be desirable
;

its introduction, on the other hand, offers

no difficulty.

Transition Films. The assumption that adjacent media are separated

by transition films, within which all quantities are supposed to vary

rapidly but continuously as we pass through the films, assuming on any
surface the values in the respective medium, J suggests a kind of non-

homogeneity ;
on the other hand, it does away with all discontinuities

and thus permits an integration throughout entire space. The import-
ance of these films in the theory of electricity and magnetism urges as

simple a treatment of them as possible ;
the simplest and most natural

assumption concerning their constitution is that, aside from the rapid

* Cf . Theory of Electricity and Magnetism, xliii.
, pp. 435-437.

. t Cf. Ibid. , xliii. , formulae (25). { Cf . Ibid.
, v.
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and continuous change of all quantities as we pass through the films,

Maxwell's equations (1) and (2) hold at every point of the same. The

surface conditions derived therefrom are then not only consistent with

one another but they suffice for the determination of the quantities

sought.

Surface Conditions. If we choose the normal to the given dividing

surface as x-axis, we find, on integrating Maxwell's equations (1) and

(2) throughout any film, the surface conditions

T'

(10)

and

=
70.01

=

(11)

.(12)

where the indices and 1 refer to the two adjacent media. For the

derivation of these equations cf. v. of my Theory of Electricity and

Magnetism.

Homogeneous Isotropic Dielectrics. Let us examine the electro-

magnetic state of an homogeneous isotropic dielectric; it is given by
the above equations (5) and (6), or, if we replace the electric and

magnetic forces by their moments (cf. formulae (3) and (4)), by

MdX_db_dc
V
Q

dt dz dy
'

MdY_<h_da,
v dt dx dz

MdZ= da_db
v dt

~
dy dx

and

D^daL_dZ_dY
v dt dy dz

Ddb = dX_(lZ
V
Q

dt dz dx

D^dc_dY_dX
V
Q

dt
~

dx dy

It is quite immaterial which of these two systems of equations (5) and

(6) or (12) and (13) we employ in examining the state of the given
medium

;
the former contains the forces acting in the medium, by

which, when determined, its state is indirectly given (cf. formulae (3)

and (4)), whereas the latter contains the moments themselves, and

.(13)
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thus defines its state directly. We shall, however, follow Maxwell's

example here and make use of equations (12) and (13).

The Electric Moments. To determine the electric state of the

given medium, we must evidently eliminate the magnetic moments

from formulae (12) and (13); for this purpose differentiate the first

equation of formulae (12) with regard to t, and we have, on replacing

-y- and
-j- by their values from formulae (13),

M iVX_ v [d (dX _dZ\_d_ (dY_ d

v dP
~
D \_dz \dz dx ) dy \dx dy

where v2 = - +
2 + .................................... (14)

dx2 dy
2 dz2

dX dY dZ
and = +_+ _; ........................... ........ (15)dx dy dz

denotes the density of the real electricity.*

Similarly, we find for the other component-moments

DMffiY d,

V W V
~dy

dz

In the given case for dielectrics the quantity e is independent of the

time t, but may be a function of the coordinates
a;, y, z. To confirm

this, differentiate formulae (12), the first with regard to x, the second
to

?/, and the third to z, add, and we have

Md/dX dY dZ\_
v dt\dx

+
~dy

+
Tz)~

'

or by formula (15)

^
=

0, hence =/(ar, y, z).

The integration of the above equations can thus be performed without

any regard to the value of e at the given point ;
that is, the accumu-

lation of electricity within a dielectric will evidently have no effect

whatever on the passage of rapid oscillations, as those of light or
the Hertzian waves through it

;
its presence can thus be thoroughly

ignored, that is, we may put e = f in all such cases.

*Cf. Curry : Theory of Electricity and Magnetism, vi., p. 46.

tCf. also Ibid., p. 64.
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We may thus replace the above equations by the simpler ones

DMd*X DMdtY
*V dp

The particular integrals of these equations representing plane-

waves have been examined in Chapter IV. of my Theory of Electricity

and Magnetism, to which I refer the student here
;

their velocity of

propagation is . . The Hertzian waves are also treated in the

JEM
same chapter (cf. also Ex. 1, Chapter II.).

The Magnetic Moments. Similarly, we can determine the magnetic
state of the given dielectric, on eliminating the electric moments from

formulae (12) and (13); to accomplish this, we proceed exactly as in

the preceding case, and we find

DM d2a DM d2b DM d2
c

The similarity between these equations and those above (16) for the

electric moments this similarity could have been anticipated from

the analogous parts played by the electric and magnetic moments

in the fundamental equations renders an examination of only the

one system necessary, provided, of course, the given solutions or expres-

sions hold for both systems or one and the same system of electro-

magnetic disturbances
; , but this would not, in general, be the case,

since certain relations exist between the electric and magnetic moments

(cf. formulae (12) and (13) and Chapter II.), among others that express-

ing the empirical law that the electric and magnetic moments take

place at right angles to each other, the proof of which follows on pp.

14-15.

Plane-Waves. The most general expression for plane-wave motion

y = <t>(xvt), (18)

where y denotes the displacement of any vibrating particle from its

position of rest, x its distance from any given point in the direction of

propagation of the wave, v the velocity of propagation, t the time, and

<f> an arbitrary function. The most familiar such functions <f>
are

/. . x\
y = a sin n (

(x\
I

' ~ ~
) I

or y = ae
in

(
tX̂

t (20)
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where e denotes the so-called
" base

"
of the natural system of

logarithms and e.the imaginary unit, \/" ~1.

The expression

(21)

evidently represents a simple plane-wave of amplitude a propagated

along the #-axis in a sine curve with the velocity v: Since y remains

unaltered, when / is increased by ,
it follows that the periodic time

27r
n

T= ;
the wr

ave-length A is thus

irv 2irv
,

hence n = r-
n ' A

We can, therefore, write the expression (21)

y = a siny (vt
-

x)
= a sin 2;r

(^
-
^\ ; ................. (22)

the angle ~(vt -x) = '^(- is called the "
phase

"
of the wave.

The other expressions (19) and (20) can be similarly interpreted.
The Intensity of Plane Waves. We define the intensity of an

electric or magnetic oscillation or beam of light at any point as the

average kinetic energy / of the vibrating particle or particles at that

point. To determine the average kinetic energy of the plane-wave,

represented by formula (22), at any point, differentiate formula (22)
with regard to t, and we have

dy 2

arid hence its kinetic energy at any time t

where m denotes the mass of the given particle; its average kinetic
ener / is therefore

The intensity of an ordinary* electromagnetic or luminous plane-
wave thus varies directly as the square of its amplitude and inversely

*
Cf. p. 5.
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as the square of its wave-length or period of oscillation. This law

is not restricted alone to plane-waves, but it also holds for spherical
waves (cf. ex. 3 at end of Chapter). In photometry, where we compare
sources of light of the same period of oscillation, we thus have the

following simple relation between their intensities :

that is, the intensity of the one is to that of the other as the squares of

their respective amplitudes.

We cannot easily compare the intensities of waves or beams of light

of different wave-length or colour, since they produce quite different

impressions on the retina of the eye; this is, of course, due to the

fact that the expression for the intensity contains the wave-length

(cf. formula (23)). We encounter, in fact, this same difficulty to a

less degree in most photometric measurements, where the given sources

are assumed to emit waves of the same wave-length.

Principle of Superposition. The principle of the superposition

of disturbances or waves is recognised as empirical in the theory
of light, since all problems treated according to the same agree
with observation and experiment. We can state the principle of

superposition as follows : When two or more disturbances are simul-

taneously brought to act on one and the same particle of a medium,
the resultant disturbance is determined by the direct superposition of

the single disturbances (cf. also Chapter IV.).

Doctrine of Interference. Simple and Compound Waves. The

doctrine of interference is only another form of or sequel to the

principle of superposition. The acceptance of some such principle is

evidently indispensable in the treatment of most problems on light ;

it must, indeed, be employed at the very outset in the examination

of the particular integrals or solutions of our fundamental equations.

With the exception of the phenomena of interference proper (cf. Chapter

IV.), the only other simple particular integrals of these equations, (16)

and (17), that would concern us here, are those that represent the

so-called
"
stationary

"
waves. We shall now find it convenient to dis-

tinguish between the "simple" waves, represented by such simple or

fundamental particular integrals as (19) and (20), and the "compound"
wave, the resultant obtained according to the principle of superposition,

of two or more such simple waves
;
the stationary waves belong to the

latter class, as we shall see directly.

Stationary Plane-Waves. The "stationary" waves are so termed

because they have apparently no velocity of propagation, their crests

and troughs remaining stationary with regard to their direction of



H ELECTROMAGNETIC THEORY OF LIGHT.

propagation. The stationary plane-wave must, therefore, be repre-

sented by some such function as

liTT , *57T ''- /OK\
y = a sin - vt cos x, ........................... (2o)

A A

which can also be written

a . 2vr , ,
. ft . 2zr ,, ,

y= ^
sin -- (^

-
x) + ^

sm
-^ (^ + a?) j

that is, according to the principle of superposition, we could thus con-

ceive this stationary plane-wave as the resultant of two simple plane-

waves of one and the same amplitude |
and wave-length A, the one

advancing with the velocity v along the #-axis, and the other with the

same velocity in the opposite direction. It is evident that the given

expression (25) is also a particular integral of our differential equations

(16) and (17).

Other compound waves, the resultants of simple waves of different

amplitude and phase, are treated in Chapter IV. on interference.

The Electric and Magnetic Oscillations take place at J_ to each

other. Lastly, let us return to the proof of the law stated on p. 11,

namely, that the electric and magnetic oscillations take place at right

angles to each other, restricting ourselves thereby, as above, to plane-

wave motion. Take, for example, the plane-wave

(26)

and let y correspond to the electric moment Y of formulae (12) and

(13); the other two moments, X and Z, vanish, and formulae (13)
reduce to

V
Q

~dt

=
~~dz

=Q
'

D db . D dc dY
^*-

9aDd
ii;*-

hence a = b = (cf. p. 10),

*>o (dY nand c= ~ \-r- dt
:,

replace here Y by its value (26), and we find

c ==
9-\ I ft ~r~ cos r (vt X)dt = sin (vt x)
Ls J A A jj i) A

or, since v= .^ (cf. p. 11),
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that is, the (resultant) magnetic oscillation accompanying the given
electric one takes place parallel to the -axis, and hence at right angles

to the given electric oscillation. Since these two oscillations otherwise

differ from one another only in amplitude their wave-lengths and

phases are the same it follows that the crests and troughs of the one

wave will coincide, with regard to direction of propagation, with those

of the other; that is, the electric and magnetic moments will attain

maxima simultaneously and periodically at any given point. These

oscillations are represented graphically in the annexed figure.

FIG. 1.

Relative Position of Crests of Electric and Magnetic Plane-Waves.

Although the above law is quite general for its proof see Chapters
II. and III.* we cannot conclude that the relative position of the

crests or troughs of all electric waves and the magnetic ones accom-

panying the same is always that just deduced; for example, the

stationary electromagnetic plane-wave behaves quite differently in this

respect. Let us examine it briefly ; take, for example, the stationary

plane-wave 9^ 9^
y = a sin - vt cos ^- x,

A A

formula (25), as our electric wave
;
we have then

X= Z=Q and y=7,
and formulae (13) reduce to

and
x

47T . ^JTT . ^/7T ,

. sin -r- vt sm -r- x dt
A A A

v a 27r 27r /= ^ - cos -r- v sm -. a; = flu/D v \ A \

M 27T . 27T

n cos -vtsm. -r-U A A

It is evident from these expressions for Y and c that

(l)for = and t .,

Y=a and c = 0,

* Of. also Maxwell : Electricity and Magnetic

(second edition).

790-791, vol. ii., pp. 339-401
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or the electric oscillation has a crest (maximum), where the amplitude

of the magnetic oscillation vanishes,

A ,

,

T
(2) for ^=2

and t=
4'

Y= -a and c = 0,

or the electric oscillation has a trough (minimum), where the amplitude

of the magnetic oscillation vanishes, and, lastly,

(3) for x = -r and t= .,
4 4

7=0 and c = 0,

or the amplitude of the electric oscillation vanishes, as the magnetic

oscillation is passing through its (initial) position of rest from a trough

to a crest (cf. the annexed figures).

* VEX
FIG. 3.

T A A 3A
Similary we find that for t = and # = -,-, and -,

y=o, c=o,

and y-0, c= -ft respectively,

or the magnetic oscillation has a crest, where the amplitude of t' e

electric oscillation vanishes, the amplitude of the magnetic oscillatf >n

vanishes, as the electric oscillation is passing through its (initial) posit on

of rest from a crest to a trough, and the magnetic oscillation has a

trough, where the amplitude of the electric oscillation vanishes. The

given waves are represented graphically in the above figures.
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Spherical Waves. Waves that diverge radially from a common
centre or source at finite distance are termed "spherical"; this is

evidently both the more general and the commoner form of radiation,

the plane-wave being only a particular case of it, that, namely, where

the common centre of the advancing wave-fronts lies at infinite distance.

The general equation of wave-motion is

(27)

where v denotes the velocity of propagation of the waves represented

by the function
</>.

For plane-wave motion propagated along the

ic-axis this equation evidently assumes the simpler form

Purely Spherical Waves. To obtain the particular form assumed

by equation (27) for spherical wave-motion, we shall make use of

that property, by which the simplest kind of spherical waves is

characterised; these would evidently be waves that diverge radially

with one and the same intensity in all directions from a common
source

;
and they would thus possess the common property that their

wave-function, </>
of formula (27), be a function of r alone, the distance

of any wave-front from its source, and not of the coordinates x, y, z

singly ;
let us term such waves "

purely
"

spherical waves. We may
thus express V2

< here as a function of r and
t,
on the assumption that

< itself be a function of these variables only. By the analytic relation

we thus have = ! = ?,
dx dr dx dr r

#< /l<ty\ ld<j> d(ld$
d^2 ~Tx\rlfc)

X +
^dr~dr\rfo

x2 d2
<j>

x* d<f> I d^
r2 dr'2 r3 dr r dr

d<t>\x^
1 d<f>

) r r dr

and similar expressions for

A &$^
$'>

r2 dr2 r3 dr r dr

^r2 + rdr'
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Equation (27) can thus be written here

_ 2

dP~* \dr* r dr

On replacing here < by the new variable

t = r<j>, ...................... ................. (29)

1 d?t & dfywe have -~ =
-,-5 >

r dt2 r dr2

which for r^ reduces to

**_,.** ...(30)
$*"" <P'

'

This equation is similar in form to those that represent plane-waves ;

the only difference is that the radius-vector r takes the place here of

one of the coordinates x, y, z (cf. formula (28)). The solution of

the latter was

*.-/(* *9-

The corresponding solution of the given equation (30) for purely

spherical waves would thus be

or, by formula (29),

't = \f(rvt),
................................. (31)

where / is an arbitrary function of (r vt).

The function < = -
f(r-vt) represents a system of spherical waves

diverging radially with uniform velocity, and one and the same in-

tensity and phase in all directions from a common centre r =
;
their

phases remain the same, as they advance, but their amplitudes decrease

inversely as the distance r, since
<f>

decreases as r increases
(cf. also

pp. 72-74 of my Theory of Electricity and Magnetism). Hence the

empirical law that the intensity of a (purely) spherical wave varies

inversely as the square of the distance from its source.

On the other hand, the function
<f>
= -f(r + vt) would represent a

system of spherical waves, converging radially with uniform velocity

and one and the same intensity and phase in all directions towards

a common centre
;
their phases remain the same, as they advance, but

their amplitudes increase inversely as the distance r.

The Point r 0. The determination of the behaviour of the given

spherical waves at the point r = Q would require special investigations
and these would naturally have to be of a purely mathematical
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character since the above equation (30) does not, as we have observed

above, necessarily hold at that point. The purely mathematical treat-

ment of such physical problems seems to me, however, to be seldom

justified, and we surely cannot be surprised when it leads to unsatis-

factory or even absurd results
;
for what is to be understood by the

presence of a system of waves or the occurrence of a natural pheno-
menon in a mathematical point 1 It is, therefore, customary to exclude

such points from the region treated, as we shall do later in Chapter V.

The Derivatives of < as Integrals. We have examined above two

classes of particular integrals of our equation of wave-motion (27),

the plane-waves and spherical waves (31) of the simplest kind; the

latter are of particular interest, since the derivatives of any such

integral or function
</>
with regard to x, y, z are also particular integrals

of our equation of wave-motion, provided of course the same can

be formed and physically interpreted. This follows, since our equa-

tion of wave-motion (27) is both homogeneous and linear, and its

co-efficient v2 a constant. These derivatives of < form a new and

interesting class of particular integrals of our equation of wave-motion;

each such integral is a compound* integral (cf. p. 13), that is, it

consists of two or more terms not necessary integrals themselves

which are thereby characterised that they contain the different powers

of - as factors. Let the following examples serve as illustrations of

this new class of integrals.

The Particular Integral ~.
dx

d$ d n ~ 1^1 x df x .

or, since x = r cos a, where a denotes the angle between the radius-vector

r and the -axis,

dx \r dr r2
"

.

This integral is a function not only of r and (r vt) but also of the

angle a. For a = - the expression for ~- vanishes, whereas for a > -

it reverses its sign ;
it thus follows that there will be no disturbance

throughout the ^-plane, and that on the one side of this neutral plane

the oscillations will take place in an opposite direction to those on the

*The word "compound" is used here in a somewhat different sense from

that employed on p. 13 ; but, as in any given case, the meaning intended is

apparent, we shall make no further discrimination between the two
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other. The amplitude, and hence the intensity, of the oscillations will

thus decrease, as we recede over any sphere, r= const., from the a>axis

towards the neutral (yz) plane, where both vanish.

Since the expression (32) consists of two terms, we can conceive the

given wave as the resultant of the two waves represented by those

terms. We should observe, however, that, although the expression

itself is a particular integral of our equation of wave-motion (27),

it does not necessarily follow that its single terms are also, or, in

general, that every compound wave is the resultant of two or more

waves, that is, waves in the sense that the functions by which those

waves are represented, be particular integrals of our equation of

wave motion (27).

The amplitude of the given compound wave can be determined

by the method given in Chapter IV it is the resultant of the

amplitudes of the two waves -
-/ cos a and - -

9 cos a determined
r dr ri

by that method. Since the amplitude of the- latter varies inversely

as the square of the distance, and that of the former inversely as

the distance itself, it follows that the amplitude of the given wave

would approach that of its one simple wave, - cos a, near its source

and that of its other, -
-j- cos a, at greater distances from it : the wave

/. r dr
- i cos a would thus predominate near the source of disturbance

T -i ir

and the wave - -/ cos a at greater distances from the same.
r dr *? , , ,

The particular integrals -f-
and -f evidently represent similar waves

dy dz

to that just examined.

The Particular Integral 2.

d?4>_d (x_df_
x

1 a*
2/ I df 1= - T^COS

2 a + ^ -r-(l
- 3CQS2

a)
-

-g/(l
- 3 COS2

a)

/I df f\ /Id2/ 3df 3f\
^ (33)

or *
I
" 1 r, + -

TT; ?, T- H I COS^a

As above, we can conceive the compound wave, represented by this

integral, as the resultant of the three waves, represented by the three

terms in -, -, and -, of which that integral is composed, and advancing
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quite independently of one another with intensities that vary inversely

as the second, fourth, and sixth powers of the distance.

On the other hand, we could conceive the given compound wave as

the resultant of the two waves

1 df f , /I d*f 3 df

The former, as function of r alone, represents a purely spherical wave,

or one that is emitted radially with one and the same intensity in

all directions from the given source. The latter is not a function of

r alone, but contains cos2a as factor
;
the disturbance represented by

it is thus confined chiefly to the region round the a-axis, diminish-

ing rapidly in intensity, as cos4a, as we recede along the surface of

any sphere with centre at origin from that axis towards the ^-plane,

throughout which it vanishes entirely ;
on either side of this neutral

plane the given disturbance is one and the same. The amplitude of

the purely spherical wave is the resultant of amplitudes that vary

inversely as the square and third powers of the distance, whereas the

amplitude of the other component wave is the resultant of amplitudes
that vary inversely, not only as the square and third powers of the

distance, but as the distance itself. The given compound wave would,

therefore, be represented throughout the ^-plane alone by the purely

spherical wave, and in the immediate neighbourhood of the z-axis,

but especially at greater distances from the source, approximately by
the other component wave.

.79 j /72-rJL

The particular integrals ? and -=-? represent similar waves.
dy

2 dz2

The Particular Integral
dxdy

d2
<f> _^Yl^/_A

dxdy dy\r
2 dr r3 /

_wd_(\<v_i\w(&f_**f_ 3/\

r dr\r2 dr r*J r*\dr
2 r'drr2

}'

If we denote the angle between the radius-vector r and the z-axis

by a, as above, and that which the or-plane makes with the zy-plane by

0, as indicated below in figure 4, we have the following relations

between these two systems of co-ordinates :

x = r cos a,

y r sin a cos 0,

z = r sin a sin
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by which the above expression can be written

dxdy r \dr2 r dr
-
3 Asi

r2 J
sin a cos a cos a

This function evidently represents an even more complicated dis-

turbance or, more strictly, distribution of the amplitudes according to

their magnitudes and direction of oscillation over any given sphere,

than those already examined. Here not only the yz- and 3-planes are

neutral planes, but the -axis is also a neutral axis, or one along which

no disturbance appears, whereas the direction of oscillation is reversed,

as we pass through either neutral plane.

x,y,z

FIG. 4.

The Particular Integral = n. It is evident that-, ^
the higher the derivative of <, the more complicated the disturbance

represented by that derivative. Although we cannot enter into the

further explicit examination of such particular integrals here, we shall,

nevertheless, call attention to some of the properties peculiar to them

in general. A glance at the above solutions shows that the nth
deriva-

tive of
<f>
would have the form

P (cos a, sin a cos 0, sin a sin 0) -^,

+ P
1 (cos a, sin a cos 0, sin a sin 0)

-
-j-

1 dk
f

+ . . .P^cos a, sin a cos 0, sin a sin 0) <n_ -f-Kdrk

1 d"f
+ . . .Pn (cos a, sin a cos 0, sin a sin 0) 7

~

(3'4)

where Pk,
the coefficient of the Jc + 1

st term of this series, denotes a
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function of the nih

degree in cos a, sin a cos 0, sin a sin ; any given
coefficient Pk is evidently a function not only of the integer k but also

of the n derivatives taken or the number of differentiations of
</>

with

regard to x, y, and z respectively.

The form of any coefficient Pk determines the law of distribution of

the amplitudes
* of the wave k over any given sphere, and the other

factors the law of variation of those amplitudes along any vector. The

total resultant disturbance at any point would thus be determined

not only by the various coefficients Pk but by the factors n_k+l and

_-^-&
=

0, 1, 2...%; its actual determination would require, however,

considerable calculation, especially for large values of. n, as we shall see

in the following chapter. Near its source the given disturbance would

be represented approximately by the first term or terms of the series

P dnf
(34) and at greater distances from it by the last term, - -~, or terms

of the same.

We have just observed that the form assumed by any coefficient Pk

depends upon the number of differentiations of
<f>

with regard to x, y,

and z respectively ;
the number of such coefficients Pk of the rc

th

degree
for any given k evidently increases rapidly as n increases. Each and

every such coefficient represents a given particular law of distribution

of the amplitudes
*

;
other laws than those determined by any such

group k given could be expressed by the sums of these different

coefficients
;

let us denote such a sum of Pk s by 2PA . It is now shown

in the theory of spherical harmonics that any given law of distribution

over any finite plane can be represented by a similar coefficient Pk or

2P
ft ;

hence it follows that any pencil of plane-waves, whose amplitudes
shall be distributed over any plane pierced by that pencil according to

any given law, however complicated, could be represented analytically

by some given series (34) or sum of such series, provided that pencil be

p finf p ^/
conceived as the residual represented by -7-5-1, or ^7 j-^ of tne

spherical waves, represented by that series or sum of series, at a very

great (infinite) distance from their source.

*For brevity, we use the expression "distribution of the amplitudes" instead

of "distribution of the amplitudes according to their magnitude and direction of

oscillation."
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EXAMPLES.

a . 2ir
1. Show that the expression

- sin
^ (vt

-
r)

T A

represents a system of purely spherical waves of amplitude
- and wave length

diverging from the common source r= with the velocity of propagation v. r_

r
-

is evidently a particular solution of the general function
ir

which represents purely spherical wave-motion.

1? therefore, represents a system of purely spherical waves of amplitude

diverging from r= with the velocity v. Since fa remains unaltered, when t

2ir 2?r
increased by ,

it follows that the periodic time T=
,
and hence the wav

n n
2irv

length \ = vT - . fa can thus be written

fa = - sin '^(vt- r).

2. Show that the following expressions represent possible forms of spheric?'

waves :

2?r a a- cos a cos w s cos a sm W
5AT* 7*

--^2 -cos2acos w- (3cos
2a- 1)^- -^sin w + (3cos

2a -
1) -oCos w,Ay* A T ?

-
.TO-

- sin a cos a cos 6 cos w - 3 -5 sin a cos a cos 6
(

sin w - cos w ),A' r r' \ A /

and
^-

- sin2a cos a sin 8 cos cos w + - sin2a cos a sin cos sin w

-

-y- ^3
sin2a cos a sin cos 6 cos w - 15 ^ sin2a cos a sin 6 cos sin w,

where w= ^[(^_ r
) t

A

and a and are the angles employed on p. 21.

3. The average kinetic energy / of any particle of the simple spherical wave

a 2?r
<t>=-srn (vt-r)

where m denotes the mass of that particle.

and hence
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The following relation would, therefore, hold between the intensities of two
jch simple spherical waves of one and the same wave-length (and phase),

<Cf. pp. 12-13.)

Cor. 1. For one and the same wave (a1
= a

>2 )
this proportion would assume the

r niiliar form j . f r 2 . r a
>

( '\ pp. 12-13 and formula 24.)

dor. 2. If we make I^ I.
2l which is customary in photometric measurements,

T "oportion (I. )
would give ^ . ^=^ .^

the amplitude of the one wave is to that of the other as rlt the distance of the

me eye of the observer from the source of the former, is to r2 ,
the distance of his

other eye from the source of the latter ; these distances are determined by
measurement.

^ 4. The average kinetic energy of any particle of mass m of the spherical wave
- afV 3 4?r2\ 67r 1= -

I -g
-

-p-
I cos w - sm w sin a cos a cos 6

127r2 9

3w , d<f> ar27rv/47T2 3\ . 127r2y
~| .W e nave = I =----

9 sin w ---^ cos w sin a cos a cos 6,
dy r[_ \ \ X2 r2 / XV

'hence I=^~ ^si

127T/47T2 3\ . 367T2

i; ( T2 2
Sln WCOS W + T2~2\r \ \ r J \r

a sin
2a cos2a cos2. 1 1 ^( ^U - ^ XV2 J

3\ 2 187T2n . 67T/49T2

C S a C S ^

The following relation would thus hold between the intensities of two such

spherical waves of one and the same wave-length (and phase) :

/! : 72= OjV2
6
( 167rV + 127r

2X2r
1
2 + 9X4

)
: a^( 1 GTTV2

4 + 127r2XV2
2 + 9X4

). . . . ( II. )

Cor. 1. If we make I
l
= Iz ,

as in photometric measurements, this proportion
would give the following relation between the amplitudes of the two waves :

ttl
2

: a2
2 = r^lGirV+ 127r2XV2

2 + 9X4
) : r2

6
(16irV + 12wa\V

1

2+ 9X4 ).

Cor. 2. If the wave-length X is small in comparison to the distances
r-^

and r*2

of the given sources from the point of observation this would be the case with

light-waves the last proportion would assume the familiar form :

o^darrrjrjj (/a = /2 ).

5. Show that the functions
a . 2v 2ir

d>-. =- sm -r-vt cos^ r
r X X

a . 2ir . 2ir
ana

2
= - sin -r-v< sin r
r A A

represent stationary spherical waves.
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6. Show that the coefficients Pk of formula (34) assume the following forms :

P = - cos a, P
l
= cos a.

(b) For?i= X= 2, n= v = 0,

PQ== _(l-3cos
2
a), P1

= l-3cos2
a, P2

= cos2a.

and (c) Forw= 2, X= /i
= l, v=0,

P = 3 sin a cos a cos 6 = = sin 2a cos 0,

3 1Pl
= -

y
sin 2a cos 0, P2

=
^
sin 2a cos 0.

7. The particular integral -TJ-J
has the form

rf
3 cos3a d3f 0/1 n . 1 rf

2
/"

-1-5= 3:3+3(1-2 cosset) cos a 9 -=-4
aar r a?*3 r'

2 dr2

- 3 (3
- 5 cos2a) cos a

-? ^+ 3(3
- 5 cos2a) cos a -

4/.

By formula (33) we have

dxr*dr r3 / dx\r* dr* r*drr5
\r* dr*

=x(V_f\.*d_( d*f_3 df 3/\ (I <W_3df 3/\
r dr\r* dr r*J

"*"

r dr\r ^2 r4 rfr
+
r5

/
+

\r
3 dr2 r4 dr

+
r5 /

15^ /

5 r// 15

The coefficients P* of formula (34) thus assume here the form

P = 3(3-5 cos2a) cos a, Pl
= -

3(3
- 5 cos2a) cos a,

P2
= 3( 1 - 2 cos2a) cos a, P3

= cos3a.

8. Show that the coefficients P* of formula (34) assume the following forms :

(a) For 7i= 3, X = 2, /*=!, v-0.

P = 3(l
- 5 cos2a) sin a cos 6,

P
l
= -

3(1
- 5 cos2a) sin a cos 0,

P2
=

(
1 - 6 cos2a) sin a cos 0,

and(&) For w=

P3
= sin a cos2a cos 6 = - sin a sin 2a cos 6

;

P = - 15 sin2a cos a sin 6 cos = - sin a sin 2a sin 20,

PI = - sin a sin 2a sin 20,

o

A = -
o sin sin 2a sin 20,

P3
= - sin a sin 2a sin 20.



CHAPTER II.

SPHERICAL ELECTROMAGNETIC WAVES: PRIMARY AND
SECONDARY WAVES; PECULIAR PROPERTIES OF

SECONDARY WAVE; THE ROENTGEN RAYS.

Wave-Functions and Electromagnetic Wave-Functions. In the pre-

ceding chapter we have sought solutions of the equation of wave-motion
,72 J

^
= v2V2

<(> ; not only these but all particular solutions of this equation

are particular integrals of any or every one of our differential equa-

tions (16 and 17, /)* for electromagnetic disturbances in homogeneous
dielectrics

;
but it does not necessarily follow that arbitrarily chosen

particular integrals of the former will be particular integrals of our

systems of equations ((16), /) and ((17), /), that is, that the same

will represent an electromagnetic wave, for not only do certain

relations hold between the components of the electric moment and

others between those of the magnetic moment, but the latter are also

always related to the former
;
and we have, in fact, made use of those

very relations to obtain our fundamental equations in the given
familiar form

;
those relations were

+ + =0 ............................. (1)

and T+r+T- ........... (2)
dx dy dz

(cf. p. 10), or there is no accumulation of electricity or magnetism in

the given dielectric.

A more convenient System of Differential Equations for Electro-

magnetic Waves. It will now be found desirable to have a more

convenient form of expression for the electric and magnetic moments

than the above given one, the differential equations (16 and 17, /)
* In referring to formulae of other chapters, we shall insert the chapter directly

after the formula in question.
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with the six variables X, Y, Z, a, b, c and the conditional relations (1)

and (2) between the same ;
such would be a single system of differential

equations with three variables and one conditional relation between those

variables (potentials), from which the electric and magnetic moments

could readily be deduced (see below). For this purpose we first replace

the three variables XJ Y, Z by four new ones, U, V, W, and ^, which

shall be determined as functions of the former by the four equations

____
D~~ dy dz 47r dx

Y= dU_dJF_ l_ d+
D dz dx 4:7r dy

=
D~ dx dz

(3)

and (4)dx dy dz

As we are replacing here three variables by four, we can evidently

assume any given relation, as (4), between the latter
;

this is, in fact,

necessary, if the new functions shall be determined uniquely.

Differentiate, next, equations (3), the first with regard to x, the

second to y, and the third to s, add, and we have

d /X\ d fY\ d fZ\ 1

or, since D is constant,

dX dY
dx dy

dZ

hence, by formula
(1), y2

^ = 0.

It thus follows from the well-known theorem from the theory of the

potential that
\j/

also vanishes, namely: "If y2
^ = at every point

of any region, and
\j/

vanishes at infinite distance this is, of course,

assumed in all such physical problems, \f/
itself then vanishes at every

point of that region."

Formulae (3) thus reduce to

.(5)

D dy dz

Y =dU_dW
D dz dx

Z =dF_dU
I) dx dy

The electric component moments, X, 7, Z, are replaced here by the

three new variables, U, V, W, and the conditional relation (1) between
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the former is thereby fulfilled, being replaced by a similar relation (4)

between the latter.

We next replace X, Y, Z m formulae (13, 7) by their values (5) in

U, V, W, and we have

V
Q dt dxdy dy

2

or, by formula (4),

and similarly

dxdz ^- +^- )-V 2
U,

dy dz )

l_da
v* dt

.(6)

Since the electric moments X, F, Z are particular integrals of the

equation of wave-motion (27, /) (cf. also formulae (16, /)), whereby,

however, condition (1) must always be fulfilled, we shall assume that

U, F", W are also particular integrals of the equation of wave-motion

or so-called "
wave-functions," which shall satisfy condition (4) ;

the

moments X, F, Z remain thereby wave-functions, since the derivatives

of any wave-function are also particular integrals of the equation of

wave-motion itself
(cf. Chapter I.). Formulae (6) can then be written

1 da

with similar equations for b and c, or integrated,

v.dU

with similar equations for b and c, where f(x, y, z) denotes the initial

magnetic component moment along the ic-axis at given point (a;, y, z).

f(xt y, z)
~5 0* would denote that the given medium contained a certain

quantity of magnetism that remained constant during the passage of

the given waves; since any such function would evidently have no

effect on the oscillatory behaviour of the medium (see p. 10), we can

therefore put f(x, y, z)
=

;
and we have

a = -
-T7-
dt

and similarly

*
Physically speaking, f(x, y, 2)< would indicate the presence of foreign

bodies, as permanent magnets, in the given dielectric, which has been assumed

above to be homogeneous.
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To determine the component-moments of the magnetic wave that

accompanied any given electric wave, we should, therefore, have to find

U, V, W as functions of X, Y, Z by formulae (5), and then replace

these auxiliary functions by those values in formulae (7). It is, how-

ever, customary to assume U, V, W as given, and to determine X, Y, Z
as functions of the former.

Let the following problems serve as illustrations of electromagnetic

spherical waves :

Problem 1. Let U, V, W be given by the wave-functions

tf=0
, r=-, w- ....................... (8)

where
<f>

shall denote any purely spherical wave-function (cf. p. 17).

These values evidently satisfy the given condition (4).

We replace U, V^ W by these values (8) in formulae (5) and (7),

and we have x _d?$ dfy ^__^ Z dftfr

D~df
+

~d^' D~ dxdy D~ dxdz

md h
V d^ V

*
d^

=
'

= -

(cf. also Ex. 1 at end of chapter).

Since we are assuming that
<f>

is a purely spherical function, that is,

a function of r and t only, the following relations will hold between its

derivatives: ^ ^ y ^ ^ z

dy dr r' dz dr r

dif r dr J
dy\r dr ) r dr dr\r dr,

ji (t O J. CL(p Cv /I Ct(p\ Z
similarly ~^- = -j- % [

\ _
5

d^(f> _ d /I d<{>\ d /I d(f>\x

dxdy~^dx\r dr)~^dr\r dr)r

i i i Cv CD (it /'I fr/ch\ 'T!

and similarly 2- = %
(
_ _

)
_

(M^ dr\r drjr

by which the above formulae for the electric and magnetic moments
can be written

(9)

* H. von Helmholtz, Vorlesungen fiber die dektromagnetische Theorie des Lichts
36 and 37, pp. 125-130.

X
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and

.(10)

=
iP r dtdr

_%l(P
& r dtdr,

Electric and Magnetic Oscillations at _L to each other. The

analytic condition that two moments, forces or vectors, / and h,

stand at right angles to each other is

cos (/, h)
= cos (/, a;)

cos (h, x) + cos (/, y) cos (h, y) + cos (/, z) cos (A, z)
=

0,

or, if we replace these cosines by the quotients ->, -J, -% and -A

h h
-2 s where fv /2, /3

and hv h
2 ,

h
B
denote the components of / and h

respectively along the x, y, z axes respectively,

The following relation evidently holds between the values (9) and

(10) for the component electric and magnetic moments X, Y, Z and

a, b, c :

which interpreted according to formula (11) expresses the familiar law:

the electric and magnetic oscillations take place at right angles to each

other.

Magnetic Oscillations at _L to Direction of Propagation. Let us

first examine the magnetic oscillations (10) ;
we evidently have not only

ax + by + cz = 0,

or, by formula (11), the magnetic oscillations take place at right angles
to their radius vector, but, since a = 0, also

by + cz = 0,

or they take place along the parallel circles intercepted on the spheres
with centres at r = by the planes parallel the yz-plane. Since the

resultant magnetic moment is given by

r = -y Sin a -j-j-,
lr v2 dtdr

where a denotes the latitude of any circle with regard to the se-axis as

pole, it follows that the amplitude of the given oscillations will vary
as the sin a, as we pass along any meridian from either pole, where it

vanishes, towards the equator, where it reaches a maximum. The
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magnetic oscillations could thus be represented mechanically by the

periodic oscillations of spherical shells about their (x)-axis.

The Electric Wave as Eesultant of two Waves. As above, we can

conceive the electric wave represented by formulae (9) as the resultant

of the two waves

-?** r-z'=o, .... .................... (12)D r dr

and

X"_y* + z* d fl d4\ Y"____*y<L(\_
d$\ ^_ = _^f_iA^

D
"

r dr\r dr)' D~ r dr\r dr)
7 D r dr\r dr

The former oscillations evidently retain one and the same amplitude
and direction of oscillation, that parallel the ar-axis, over one and the

same sphere with centre at r =
;

*
they could thus be represented

mechanically by the periodic oscillation of spherical shells with centres

at r = along that axis. The oscillations X", Y", Z" take place along
the meridians of the spheres with centres at r = Q ;* this follows from

the two analytic relations

or these oscillations take place at right angles to the magnetic ones,

that is, to the circles intercepted on the spheres with centres at r =

by the planes parallel the ^-plane, and

or they take place along the surfaces of the spheres with centres at

r = 0. The resultant electric moment X", Y", Z" is evidently

r dr

The Electric Waves at great distance from Source. For large
values of r the moments X', Y', Z' may be neglected in comparison
to the moments X", Y", Z", and thus be rejected; that is, the

periodic oscillations parallel to the z-axis are gradually lost sight of,

when compared with those along the meridians, as the given dis-

turbance recedes from its source. This becomes evident when we

*
Cf. v. Helmholtz : Vorlesungen uber die elektromagnetische Theorie des Lichts,

p. 128.
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replace the purely spherical function
</> by its value - f(r i)t) (cf.

formula (31, /)) in formulae (9) and also -, ^,
- by the direction

cosines a, /3, y. We have then

X 2

, (13)

_ + _
r2 ^r rs/

+ VP + r ;
r ^r2 r2 ^r

+
ji

r2 dr rs

which for large values of r could evidently be replaced by

D T dr*' D
Z

r dr2
' D

ayd2f
r dr2

,

( '

The Electric Waves near Source. Near the source of the disturb-

ance the following formulae would evidently be approximate :

Z1 32 V
i oa , JL

Observe that the electric moment X is here a function of both the

moments X' and X", and is not, as might be supposed, given alone by
the latter.

The Magnetic Wave. On replacing < by its value - / and -,
-

,
- by

a, /?, y in formulae (10) for the magnetic moments, we have

-

dtdr

dtdr r2 dt\'

For large values of r the resultant magnetic moment is thus approxi-

mately

! r dtdr

we observe that the electric and magnetic moments are here of the

same order of magnitude in (-V

{ UNIVERSITY
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Near the source of the disturbance the resultant magnetic moment

would be approximately

which is of a lower order of magnitude in - than the expression for

the resultant electric moment. It would thus follow that, as we

approached the source of the disturbance, the electric oscillations

would become more perceptible than the magnetic ones.

Linearly Polarized Light. We have seen above that for large

values of r the electric moment X' (F =
' =

0) vanishes in comparison

to the electric moment X", Y", Z"
;
as r increases, every element of

wave-front approaches more and more that of a plane, until for

infinitely large values of r X' vanishes entirely, and the wave-front

itself becomes plane. The oscillations X", Y", Z" take place, more-

over, at right angles not only to the magnetic ones accompanying

them, but also to their direction of propagation, and are propagated

according to the law that their amplitudes decrease in magnitude

inversely as the distance from their source.* At great distances from

their source these waves may, therefore, be identified with those of

linearly polarized light, or, conversely, linearly polarized light may be

represented by the given system of equations (12A) or (14).

Primary and Secondary Waves. The electric wave represented

by the electric moment X' differs materially from all ordinary

electric waves; it appears only in the neighbourhood of its source,

within which region its amplitude decreases inversely as the square
and third power of the distance (r), whereas the oscillations themselves

take place, in general, neither at right angles to nor along their

direction of propagation. As I shall henceforth draw a sharp dis-

tinction between this kind of wave-motion and the ordinary one, let

us term the ordinary electromagnetic waves, or those whose oscilla-

tions take place at right angles to their direction of propagation, and

whose amplitudes decrease inversely as the distance "
primary

"
and

all other electromagnetic waves, or those whose oscillations do not

take place at right angles to their direction of propagation, and whose

amplitudes vary inversely as the square and higher powers of the

distance "secondary." These two definitions of secondary waves,
" those whose oscillations do not take place at right angles to their

direction of propagation," and " those whose amplitudes vary inversely

* We are rejecting here the terms in - and i which for large values of r
Y Y

i

approximately vanish, when compared with those in -.
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as the square and higher powers of the distance," will be found to be

identical.

As an illustration of the resolution of a compound wave into its

primary and secondary, take that represented by formulae (13) ;
we

conceive the given wave as the resultant of two waves, the primary

_
D r dr* D r dr* D

and the secondary

D~ r2 dr

_

Z
2 _3aydf 3ay fD~ r2 dr >3 D~~i*dr r3

7'

The primary and secondary waves are, in general, dependent on

each other, or the presence of the one demands that of the other, that

is, neither can exist alone by itself
;

this follows, since the expressions

for either wave are not, in general, particular integrals of our differ-

ential equations, although their sums are such, the compound wave

being represented by those sums
;

this is demonstrated by the given

example.
Besides the above class of electromagnetic waves, a primary accom-

panied by a secondary wave, we have, of course, the simple electro-

magnetic wave or primary wave, if we may then term it such, that

is not accompanied by a secondary wave. Such waves are represented

by the simple or purely spherical wave-functions <j>,
and not by their

derivatives. An irregular distribution of wave-intensity over any

given sphere, with centre at source of disturbance, would, therefore,

always indicate the presence of a secondary wave in the given electro-

magnetic wave and vice versa.

Analogy between Primary and Secondary Waves and Primary and

Secondary Currents. The Roentgen Rays. The idea of conceiving a

compound electromagnetic wave as composed of two waves, a primary
and a secondary one, was suggested by the somewhat analogous
behaviour of the primary and secondary currents in current-electricity.

As the primary and secondary currents are dependent upon each

other, so are the primary and secondary waves; this dependence lies

in the one case in the variation in the current-strength of the primary

current, in the configuration of the two conductors or circuits and

their relative position to each other, and in the other case indirectly in

the
similarity or relations the appearance of the same quantities

between the analytical expressions for the two waves. Let us pursue
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this analogy further. The generation of a secondary current assumes,

first of all, the presence of a conductor or circuit in the field for the

passage of the same
; analogously, the appearance of secondary waves

would demand the presence of foreign bodies or media, aside from

those within which the given electromagnetic disturbance is generated,

in the given, otherwise homogeneous, field
;

the vacuum tube the

vacuum within the tube, the tube (glass) itself, etc. employed in the

generation of the Roentgen (X) rays may serve as an example of such

foreign bodies or media brought into the field. The introduction of

the second brass knob of the Hertzian vibrator would, in fact, consti-

tute a field, within which such secondary oscillations might be expected
to appear; but these knobs are placed so near to each other 2 to 3

millimetres apart in the generation of the Hertzian oscillations, that it

would be difficult to detect these secondary oscillations except in the

neighbourhood of the vibrator (cf. Ex. 12 at end of chapter). On the

other hand, could not the insertion of the vacuum tube, employed for

the generation of the Roentgen rays, into the field give rise to

secondary waves that could easily be detected 1 The integrals em-

ployed for representing given disturbances would naturally have to

be supplemented by the corresponding surface conditions. The
observed variation in the intensity of the (primary) vibrations emitted,

due to the heating of the apparatus, sparking and radiation, would

correspond to the variation in the current-strength of the primary
current, and thus give rise to secondary oscillations. Henceforth

I shall lay no great weight on the given analogy, which is to be

regarded merely as a suggestion..

Problem 2. Let the auxiliary functions U, V, W be given by the

wave-functions

where < is a purely spherical wave-function, that is, any spherical
wave-function that is a function of r and t only. These functions

evidently satisfy the required condition (4).

Replace Ut F, W by these values in formulae (5), and we find

= _

D dxdf~ dxdz*

= '

D
/ '

~~i

1)*~
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or, since
<f>

is a function of r and t only,

X^dTf-z
2 d /I

d</)\~| _ x(y
2 - z2

)
I" d2 /I d<\ 1 d/1

d<\~|
/>
~

rfajL r dr \r dr/J
"

"T2
[>*

2
\? ~dr)

~
r dr\r dr)]

'

Y d
[~3 dc/> a;

2 + 2,?
2 d /I d<\~]

^~ d?/|_r ^" r dr\?* dr/J

_y rx
2 + 2z2 d^/1 d^\ 2x2 + 3'i/

2 + z2 d /I
d</>\~|

r[_ r dr2
\r dr/ r2 dr\r dr/J'

and, similarly,

^ pc
2 + 2?/

2 d2 /I d<^>\ 2a;
2 + ?/

2 + 3^2 d /I d^)\~]

D r|_ r dr2
\r dry r2 dr\r dr/J*

We next replace here the purely spherical wave-function < by its

value -f(rvt) (cf. formula (31, I.)); for this purpose we build the

following expressions :

d$_l df_ I

dr~ rdr~ r2
^1

?* =i^_l^ 1^_ 6
/

dr3 r dr3 r2 df2 r3 dr r4

dr\r dr)~ r dr2 r2 dr'

hence = I^_ 1 ^+ ^ /,

anci
I

.

j
_L _

dr \r dr/ r dr3 ?*
2 dr2 r3 dr

1 d3
/" 5 d2/ 12 d/ 12 -

nence = _^i _^^ -i -f

by which the above formulae can be written

X_x(f- z2
)
fd3/ 6 d2/ 15 df_ 15

^_ y F/ 2 9 2\^
8/ 3(

2 -^2 + 3^2

.....(17)

and, similarly, -p.
==

v
.

L) r
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The Primary and Secondary Electric Waves. Since / and its deri-

vatives with regard to r are evidently of the same order of magnitude

in -, we can thus conceive the given electric wave as composed of four

single waves, whose amplitudes vary as the different powers the first

four of -
;
the secondary wave would, therefore, be here the resul-

tant of three waves, whose amplitudes decrease inversely as the second,

third, and fourth powers of the distance. If we exclude the immediate

neighbourhood of the source of disturbance from the region in

question, we may evidently reject the terms in
^
and

^
of formulae

(17) in comparison to those in -
2 ,
and the secondary wave would then

be given approximately by the latter terms. Since the immediate

neighbourhood of any source is seldom accessible to examination, we

shall, in general, exclude it from the region in question ;
the secondary

wave would then be represented approximately by the terms of the

second order of magnitude in -
2 ,

and we shall, henceforth, refer to it

as thus defined, unless otherwise specified. For the given region the

electric moments of formulae (17) can thus be written (approximately)

_i + 2

D I)
"*" D

_ l j_
D D ^ D

d

d*f

dr*

dr*

,....(17A)

where a, /?, y are the direction-cosines of r; Xv Yv Z^ denote the

moments of the primary and X>, F2 , Z^ those of the secondary electric

wave.

The Magnetic Wave. By formulae (7) and (16) the magnetic
moments are

('.

..(18)

v2 dtdydz v2 r dtdr\r dr.

~
JP dtdxdz

= ~
v2 ~7 didi* \r ~dr)

v2 r dtdr\r dr) t

By the relations on p. 37 between the derivatives of < and /, these

expressions for a, &, c can be written
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a== 2^y d
l(d*f_^df

3

_
rdrr>2

N

j
)

.(ISA)

V2 T (

We can thus conceive the given magnetic wave as composed of three

single waves, whose amplitudes decrease inversely as the first, second,

and third powers respectively of the distance. In the region in

question, that, namely, in which formulae (17A) approximately hold,

the secondary magnetic wave would, in general, be represented approxi-

mately by the terms in of these formulae (ISA).

Regions in which the Primary Wave disappears. From a glance at

formulae (17A), it is evident that there are certain regions, in which the

secondary (electric) wave alone appears* and cannot, therefore, be

overlooked when compared with the primary (electric) wave, even at

greater distances from the source of disturbance. These regions are

characterised by the disappearance of the primary wave,* that is, they
are determined by the vanishing of the coefficients of the terms of the

first order of magnitude in -
;
the given particular regions, lines or

surfaces, of formulae (17A) are four in number and are determined by
the following sets of analytic relations :

Region 1. a(/3
2 -y2

)
=

/3(a
2 + 2y

2
)
= y(a

2 + 2/3
2
)
=

(19)

Region!.

'

a
(/3

2 -y2
)
=

0, /3(a
2
-f 2y

2
)^0, y(a

2 + 2/3
2)^0 (20)

RegionS. a(/3
2 -y2

)^0, /3(a
2 + 2y

2
)
= 0, y(a

2 + 2/3
2)^0 (21)

Region 4. a(/?
2 -y2

)^0, /3(a
2 + 2y

2
)^0, y(a

2 + 2/3
2
)
=

(22)

It is easy to show that the vanishing of any two of the given

coefficients is identical to that of all three or to the analytic relations

(19). Moreover, since formulae (17A) are symmetrical in y and z, it will

be necessary to examine only the first three regions, formulae (22) which

determine the fourth region being analogous to those (21) for the third.

Region 1 : The Three Coordinate Axes. The analytic relation (19)

can evidently be replaced by the following :

a = 0, /3
= Q .and hence y = 1

;

a = 0, a2
4- 2y

2 =
0, hence y = and /?

= 1
;

and
/3
=

y, )6
=

0, hence y = and a=l,
or the three coordinate-axes.

*
Or, more strictly speaking, one or more of the electric component-moments of

the primary wave disappear.
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It thus follows that the electric moment Xv Yv Z^ vanishes along

all three axes x, y, z. The electric moment JT
2, Y^ Z^ assumes the

following particular form along the same :

X
2
= Y

2
= Z

2
= along the -axis,

X9
= Z

2
=

0, Y2
= -g -r^ along the y-axis,

and X
2
= Y

2
=

0, Z2
=^ _^

aiong the ^-axis
;

that is, the secondary wave disappears entirely along the #-axis, but is

propagated along the y and z axes as a longitudinal wave.

Region 2 : The yz and /3
2 = y

2 Planes. This region evidently com-

prises the two regions a = or the ys-plane and /3
2 = y

2 or two planes

passing through the origin at right angles to each other and bisecting

the angles between the xy- and x^-planes.

Fora = 0, hence /3
2 + y

2 =
l, formulae (17A) reduce to

">

2ffly(P/
r ^r3 r r

where, for brevity, we have put D=l. These values give

and

It thus follows that both the primary and secondary oscillations of

the /2-plane take place in that plane and that the amplitude and

intensity of the latter are functions only of the distance from the origin.

Formulae (18A) reduce here to

aa&l/dy_3# 3 A
v2 r dt\df* r drr* J

J'

that is, the magnetic oscillations of the ^-plane take place parallel to

the z-axis.

The analytic relations a = 0,

and /3 (a
2 + 2y

2
)
= y (a

2 + '2/3^ 0,

or, since a = and hence /2
2 + y

2 =
1,

correspond to a particular case of the given one. The particular region
is evidently two straight lines passing through the origin at right
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angles to each other and the #-axis and bisecting the angles between

the y and z axes.

The resultant electric and magnetic moments assume the following

values along these lines :

~ n- 3
and

For /3
2 = y

2
,
hence a2 + 2/3

2 - a2 + 2y
2 =

1, formulae (17A) reduce to

+
r2 dr*

7 d*f 37 d*fZ =
rdr^-^dr^

J}=1 '

Formulae (ISA) give here the following expression for the resultant

magnetic moment :

" r dr

Both the primary and secondary oscillations of the planes /3
2 = y

2

thus take place at right angles to the ic-axis, whereas their resultant

moments, and also that of the magnetic oscillations accompanying them,

are entirely independent of the direction-cosine a.

Region 3. See Examples 2 and 3 at end of chapter.

Proof of General Laws. To confirm the validity of formulae (17A)

and (ISA), let us next prove some of the well-known laws of electricity

and magnetism for the oscillations represented by the same.

The Electric and Magnetic Oscillations take place at JL to each

other. The analytic condition that electric and magnetic oscillations

take place at right angles to each other is, by formula (1 1),

That the primary (electric) and the magnetic oscillations of the given

problem take place at right angles to each other, the relation must

then hold

To ascertain whether this condition be fulfilled, replace here the given
moments by their values (cf. formulae (17A) and (ISA)), and we find

X^a + YJ + Ztf
= Ca/37 [2 (/3

2 -
y
2
) + (a

2 + 2y
2
)
-

(a
2 + 2/?

2
)]
=

0,

f 3 df 3
where C = ^ ~A^\-r^

v2r2 dr6 at var2
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Similarly, we find

= 4(7 [
_
3(02

- f) -
(
a2 -p + 3f) + (a* + 3/3

2 -
72)] = 0,

or the secondary (electric) and the magnetic oscillations take place at

right angles to each other.

It thus follows that the electric oscillations represented by formulae

(17A) and the magnetic ones accompanying the same take place at

right angles to each other. Moreover, it is evident from the form of

the above expressions that not only the magnetic oscillations repre-

sented by formulae (ISA) but also all three component oscillations, of

which the same may be conceived as composed, take place at right

angles both to the primary and to the secondary (electric) oscillations.

Similarly, it is easy to show that the electric oscillations of the third

and fourth orders of magnitude in - of formulae (17) also take place at

right angles to the different magnetic ones (ISA) that accompany them.

Hence the general law: the (total) electric and the (total) magnetic
oscillations take place at right angles to each other.

The Magnetic Oscillations take place at _|_ to their Direction of

Propagation. A glance at formulae (ISA) shows that the condition

that the magnetic oscillations take place at right angles to their

direction of propagation, namely, ax + by + cz = 0, is fulfilled.

The Primary Oscillations take place at _|_ to their Direction of

Propagation. It is easy to show that the primary (electric) oscillations

also take place at right angles to their direction of propagation.

Replace Xv Yv Z
l by their values from formulae (17A) in the given

condition, and we have

= 0. (D= 1).

The Secondary Oscillations do not take place at J_ to their

Direction of Propagation. Lastly, replace X2 ,
Y

2,
Z

2 by their values

from formulae (17A) in the form* of the condition that the secondary

(electric) oscillations take place at right angles to their direction of

propagation, and we find

_
y2) + 3/3

2
(a

2 _ 02 + 3^) _ 37
2
(a

2 + 3 2 _
y2)]

= 3 [(a
2 + /)/-(a2 + ^)/?2]lgj

The word " form "
is used here as in the theory of invariants.
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or, since <x
2 + /3

2 + 7
2 =

1,

that is, the condition, that the secondary electric oscillations take place

at right angles to their direction of propagation, is, in general, not

fulfilled.

Determination of the Angle of Oscillation. Let us next determine

the angle the given secondary oscillations make with their direction of

propagation. We denote the given resultant moment by /2
and its

direction-cosines by A
2 , //,2 ,

i>
2 ;

the angle in question, which we shall

denote by (/2, r), is then given by the familiar formula

cos(/2 , r)
= A

2
a + /z2/3 + i/

2y, ........................ (23)

X Y Z
or, since X

2 , /*2,
i/
2 may be replaced by the quotients -^, -^

2 and y
?

respectively (cf. p. 31), where /2
2 =X

2
2 + F2

2 + ^2
2

,

cos(/2 ,
r)=

2

~^

2rf^ (23A)

Replace here X
2 ,
F

2 ,
Z

2 by their values from formulae (17A), and

we have

_ -
6a'(ffl

- f) + spy -p + ay)- 3y
2
(

2 + W* - 7
2
)

^ ->!'*> - .-A 9 . /->; / ^ _ 0-2
_j_ 3y'2V2 _j_ -y2(a

2 + 3 jg2 _ y2\2

- 22a2
/?

2
4- a2

7
2 -

}

Since this expression for cos (/2 , r) assumes one and the same value

along any given vector, that is, for any given ray or pencil of waves,

it will be sufficient to determine its behaviour over any sphere with

centre at the source of disturbance
;
for this purpose we replace the

rectangular coordinates x, y, z by the polars r, 0, <, already employed
on p. 21, where 6 denotes the angle, which the plane passing through
the z-axis and the vector r or direction of propagation of the given

wave makes with the y-plane at the point x, y = z = 0, and <* the angle

between the vector r and the a^axis (cf. figure 4, p. 22).

The following analytic relations hold between these coordinates :

x = r cos
</>,

a = cos <f>
}

y = r sin < cos 0, hence /3
= sin

</>
cos \ .............. (25)

z = r sin < sin 0, y = sin < sin 6 }

* On page 21 we denoted this angle by a.
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The general formula (23A) for the angle (/2 , r) can, therefore, also be

written

. cos <f> + Y2
sin <f>

cos 6 + Z2
sin

<f>
sin 6

_

and formula (24) for the given particular wave in the simpler form

cos (/2 , r)=- sin <(cos
2 - sin20)

= - sin < cos 2(9.......... (26A)

Regions in which the Secondary Oscillations are Longitudinal. The

given oscillations are longitudinal, when cos(/2, r)= 1, that is, they

are longitudinal in the regions determined by the equation

1 = + sin<cos 26, or sin < cos 20 = 1.

The region sin
<f>

cos 26 = 1: this region evidently comprises the

regions sin< =
l, cos 20=1,

hence ^ = 9'
= an(* ^ or ^e

2/~
axis

>

and sin <=-!, cos 20 = -
1,

3;r /,
T , 3?r ,,

hence ^ = "o" 9
a T or -2-axis.

The region sin
</>

cos 20 = - 1 : this region comprises the regions

sin< =
l, cos 26= -1,

7T 7T , 3?T
hence ^=9> ^ =

9
anc^

~o~'
or the 0-axis,

and sin <=-!, cos 20=1,
n

hence < =
-^- ,

= and ?r, or the ?/-axis.

Regions in which the Secondary Oscillations are transverse. The

given oscillations are transverse, when cos (/2, r)
=

0, that is, they are

transverse in the regions determined by the equation

sin
(j>
cos 20 = 0,

or sin < = 0,

hence < = and TT, or the x-axis.

and cos 20 = 0,

hence fl =
*

^, ^ and ^
or two planes passing through the a;-axis at right angles to each other,

and bisecting the four quadrants (y, 2), (2,
-

1/), (
-

?/,
-

2) and (
-

2, ?/).

We have now seen on p. 39 that the given secondary oscillations vanish

along the #-axis, and on p. 41 that they take place at right angles to

that axis throughout the planes /3
2 = y

2 or the planes =
j, , -j-,

*7TT
'

and
-j-, throughout which they have just been found to be transverse

;

their direction of oscillation is thus thereby determined uniquely,
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as indicated in figure 5 below. The resultant moment of these trans-

verse oscillations is

r2 dr2

(cf. formulae on p. 41), which by formulae (25) can be .written

that is, their amplitude increases according to sin
</>,

as we recede from
the z-axis, where it vanishes, along any circle, intercepted on the planes

/?2
_

y2 j^ any Spnere ^th centre at source of disturbance, towards the

^-plane, where it reaches a maximum, as indicated in figure 5.

FIG. 5.

The Secondary Oscillations of the yz-Plane ;
Rotation of their

Direction of Oscillation through 90. We have seen on p. 40 that

the oscillations of the ^-plane take place in that plane, and that their

amplitude and hence intensity remain constant for any given radius-

vector. Along the lines (vectors) of intersection of this plane and those

of transverse oscillation (/3
2 = y

2
),

the given secondary oscillations will

thus take place in the y^-plane and at right angles to their direction of

propagation; that is, their direction of oscillation is determined

uniquely along those lines of intersection or vectors. Moreover, it

follows from the expressions for X
2,
F

2 ,
Z

2 along the y- and 2-axes (cf .

p. 39), as we recede from the /-axis along the circle, intercepted on the
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y,?-plane by any sphere with centre at origin, towards the -axis, that

the given secondary oscillations are turned through an angle of 90 in

the y^-plane or 180 with regard to their radius-vector, their amplitude

and intensity remaining constant (cf. the above figure). Formula (2 6A)

reduces here to

cos(/2, r)= -cos 26,

hence (/2 , r)
= 180 -

2(9;

that is, the angle (/2, r) varies as 180 - 20.

The Secondary Oscillations of the xz-Plane
;

Rotation of their

Direction of Oscillation through 180. As we recede from the z-axis

along the circle, intercepted on the x^-plane by any sphere with centre

at origin, towards the 2-axis, the given secondary oscillations are

turned through an angle of 180 in the o^-plane or 90 with regard
to their radius-vector, whereas their amplitude increases as sin

<f>,
from

at the a;-axis to a maximum at the z-axis, as indicated in the above

figure. This follows from the particular form assumed by formulae

{17A) and (26A) in the given plane. Formulae (17A) reduce here to

which by formulae (25) can be written

3 sin < .sin 2<j> d*f 3sin<cos2< d2f-
r2 -faV *2- U ^2- -72 faZ>

hence the resultant moment is

or the given oscillations take place in the i&z-plane, their amplitude

varying as sin <. Formula (26A) assumes here the particular form

cos(/2, r)
=

sin<#>,

or the given oscillations are turned through an angle of 90 with

regard to their radius-vector, as we pass from the z- to the z-axis
;
that

is, they either retain one and the same direction in space or they are

turned through an angle of 180 in the ^-plane. To determine the

direction of oscillation in question, we seek the values of the moments
X

2
and Z

2
at some intermediate point of the given arc, for example, at

the point x = z or < = 45. The above formulae become here

from which it is evident that the oscillations in question are turned

through an angle of 180 in the ^-plane, as we pass from the &> to the
.e-axis.
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The Secondary Oscillations of the xy-Plane. Since the given

secondary oscillations are symmetrical with regard to the xy- and

a.z-planes, except in sign (cf. formulae (17A)), the oscillations throughout
the former plane will behave similarly to those of the latter, which

we have just examined; namely, as we recede from the x- towards

the y-axis along the circle, intercepted on the icy-plane by any sphere
with centre at origin, the given oscillations are turned through an

angle of 180 in the xz/-plane or 90 with regard to their radius-

vector, whereas their amplitude increases as sin <, from at the

eC-axis to a maximum at the y-axis ;
these oscillations are also indicated

in the above figure.

The Primary Wave. The primary wave of the given problem
differs only immaterially from that of the preceding problem. We
identify it, together with the magnetic wave accompanying the same, as

the linearly polarized electromagnetic or light-wave, whose oscillations,

both electric and magnetic, take place at right angles not only to each

other but to their direction of propagation ;
it is, in fact, only another

type another distribution of the oscillations with regard to direction

of oscillation and to amplitude over any given sphere of the electro-

magnetic waves, with which we are already familiar.

The Secondary Wave. The secondary wave of the given problem
differs from that of problem 1 chiefly in that its direction of oscillation

does not remain one and the same at all points parallel the -axis

but varies from point to point ;
this demonstrates that other secondary

waves than those (the secondary Hertzian), whose oscillations retain

one and the same direction of oscillation throughout the given region,

are consistent with our differential equations. The given particular

law of variation of the direction of oscillation is, of course, only one of

the many possible laws (cf. also p. 63). A peculiarity of the given

secondary (electric) wave, to which we may call attention, is that it

is propagated along the y- and 0-axes as a longitudinal wave, unaccom-

panied by either a primary (electric) or magnetic wave (cf. Ex. 12 at

end of chapter).

Problem 3. Let V, V, W be given by the wave-functions,

dz

_
dz dx .(27)

=
dx dy

where <
1}

<
2 ,

<
3
denote purely spherical wave-functions. These values

evidently satisfy the required condition (4).
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Since the </>'s are functions of r and t only, we can write

~~

r dr T dr
'

with analogous expressions for V and W
; or, on replacing the </>'s by

the/'s (cf. formulae (31, I)) and -, -, - by the direction-cosines a, /3, 7,
T r T

.(28)

with analogous expressions for ?^and W.

Let us, next, assume that the oscillations represented by the functions

/i> /2' /s Differ only in amplitude from one another the more general

case, where these functions shall represent oscillations of different

phase, is treated in the following chapter. Moreover, let these

functions be the simple sinus functions, namely,

/!
=

a-L
sin ~Y (vt

-
r)

/2
= a

2
sin

^-- (vt
-

r)

/3
= a

3
sin -r-

(v^
-

r)

..(29)

where the amplitudes av a
2,

a
z

shall be constant not functions of

x, y, z.

If we replace /15 /*2 , /3 by the functions (29), formulae (28) assume

the form

cos w + - sin

sn

where
XT ,

W = -T- ana w =
A

S $
2
a)sin w

.-')

(30)

(31)

The Wave-Length A. The wave-length X of the waves of light, with

which we are familiar, is small in comparison to the radius-vector r,

except at or near the source of the disturbance itself
; this region, the

examination of which offers serious difficulties (see Chapter V.), is so

small it is of the dimensions of the wave-length that it is of little

importance, if, for no other reason, for that that all empirical data

concerning it are necessarily wanting. Hence, at finite distance from
the given source the second terms of the above expressions for U, V, W
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would, in general, be small in comparison to the first and could thus

be rejected (cf. also p. 32) ;
on the other hand, 17, F, W would be

represented by the former at or near the source of the disturbance,

provided the given expressions hold there. In general we could

thus put n-w-w cosw

W=- (afl
- &

2a)cos to

.(32)

We, next, replace U, V, W by these functions in formulae (5), and

we find

/?
2 + 7

2
)
- a

(
a$ + as7)] sin w +

2
a

(
2a

i

7)
=

[
a2(a2 + 7

2
)
-

/3(^ia + as7)] sin w +
-^ /3(2a2/3 + a

x
a + a

3y)cos w J-- (33)

71
=

[
a3(a

'2 + ^2
)
~
7( tt

i
a + a

2/^)]
sin o> + ~2 7(2a3y + a

x
a + a

2/3)cos w

For similar reasons to those just mentioned, the second terms of these

expressions would, in general, be smalt in comparison to the first, and

could thus be rejected. In those regions, however, where the coefficients

of the first terms vanish (see below), the electric component-moments

would be represented by the terms of the next higher order in -

(cf . also p. 39, and Ex. 1 2 at end of chapter) ;
but these would not be

the ones given here, since we have already rejected terms of that order

in the above development.

Regions in which Primary Wave disappears. The vanishing of

the given coefficients signifies that certain analytic relations hold

between the amplitudes ar a
2 ,

a
3 , and the direction-cosines a, ft y.

Since the amplitudes are entirely arbitrary, but given, and the

direction-cosines variable, such relations determine given regions

(cf. also p. 39). The regions in question are evidently determined

by the four sets of analytic relations

(34)

-
7 (fll

'"

and two analogous sets, where first the second and then the third

D
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relation of the first set alone holds (cf. also formulae (19)-(22)). We
observe, as on p. 39, that if any two relations of the first set, formulae

(34), hold, the third necessarily follows.

We have just observed that formulae (33) do not hold in all regions,

namely, in those determined by the analytic relations (34), (35), etc.

To derive the formulae for those regions, we must evidently employ
formulae (30) instead of the approximate ones (32) in the above

development; we thus replace U, V, W by their explicit values (30)

in formulae (5), and we find

sn w

+ y
2
) + 3a

(
lh COSW

D
=
7 K(a

'

2 + y
2
)
-

f
2 [2a2

- 3a
2 (a

2 + y
2
) + 3/3 (a-^a. + a

3y)] cos <o

, (36>

where we have rejected the terms of the third order of magnitude in
;

the terms retained, being of the first and second orders, thus represent

the primary and secondary oscillations respectively.

Region 1 : the Vectors

evidently be replaced by

a : /? : y = : a
3

. Formulae (34) can

these equations represent a straight line passing through the source of

the disturbance
;

its direction is given by the proportion

hence

where

(37)

m =

Formulae (36) assume the following simple form along these vectors :

X 2n Y 2n Z 2n

D
= alCoso>, -=_

2 cos<o,
-

D
=_^

3 cos<o;

that is, only the secondary oscillation appears here. This and similar

lines would, therefore, be suited best for an experimental research of the

given secondary wave.
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Region 2, a Surface. The region determined by the analytic relation

is the surface a^f + z2)- (a$ + ajs)x
= Q

;
..................... (38)

it passes through the origin and the line determined by formulae (37).

The ^-component of the electric moment at any point of this surface not

on the line (37) still remains

(
39

)

the other two components are given by the general formulae (36),

where, however, any two of the variables a, /3, y are to be replaced as

functions of the third, after the former have been determined as such

from the analytic relations

rti(/3
2 + 7'

2
)
= a(^ + rt37)>

and a2 + /3
2 + y

2 = l.

Similarly, analogous formulae hold for the two regions or surfaces

a
2 (x

2 + z2
)
- fax + a

2z)y
=

0,

and a
B (x

2 + y
2
}
-

(a^x + a
2 y)z

= Q.

The Magnetic Waves. By formulae (7) and (32) we find the fol-

lowing approximate values for the component magnetic moments :

n\ , ox . , n\ , \ 1a= ."(y_ aft) sin a>, 6= u
(aa. -

a-,y) smw
TV

V
TV

\

(40)
n\/ b \ I

c = - (ap - flo) sin w
rv

v l

j

These formulae are also approximate for the regions determined by
the four sets of analytic relations

a
2y a

B/3
= a

3
a -

a-^y
= a^ - aa = 0, ..................... (41)

............... (42)

and the two analogous sets, since the terms of the second order of

magnitude in -, which appear in the explicit formulae, contain each the

same factor (azy
- <x

3/3), (a3a
-
^y), or (a^ -

2a), as the respective term

of the first order. The secondary magnetic wave would, therefore,

always be accompanied by its primary magnetic wave.

The first set of analytic relations (41) is identical to the analogous
one

(cf. formulae (34)) for the electric moments; these relations deter-

mine the line a: /3 :y = a
l
:a

2
:a

3 (cf. p. 50).

The magnetic moments vanish along this line, whereas the electric

ones were those of a secondary oscillation only. It thus follows that

the secondary oscillations are not, necessarily, always accompanied by

magnetic ones (cf. also p. 47).
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The Wave-Length A. On p. 48 we have observed that the wave-

length A. of all light-waves, with which we are familiar, is small in

comparison to the distance r from source, and we, therefore, rejected

the second terms of formulae (30) in our derivation of the formulae

(33) for the electric moments; subsequently, upon the examination

of those particular regions, in which the coefficients of the first terms

of the latter formulae vanished, we found it necessary to retain the

terms we had just rejected. The rejection of the given terms was

evidently justified, as long as we were dealing with light-waves proper ;

but just as soon as our investigations are to be applied to electro-

magnetic waves of long wave-length or electric waves proper (Hertzian)

(cf. also next page), those terms must be retained.

Explicit Formulae for Moments. Instead of seeking, as above, par-

ticular formulae for the different kinds of electromagnetic waves, let

us take the general (explicit) formulae for the electromagnetic waves

in question and interpret the same according to the different values

assigned the given quantities and constants. We replace U, V, W by
their explicit values (30) in formulae (5) and (7), and we find

./I IV r / s-\fi (r\ / r\ \ -i

sn

2
) + 3a (aJ3 + a

3y)] cos a>

2
) + 3a (*sP + sn

Y ri
2

-=-Ma2 + y
2
)
-
P(ai

+ -
[2$2

- 3&
2 (a

2 + y
2
) + 3/?( 1

a + %y)] COS co
J

1

Z n2

= [% (
a2 +

g [2a2
- 3a

2 (a
2 + y

2
) + 3/3(al

a + a
sy)] sin w

+ a sin to

1

(a
2

cos w

sn w

..(43)

and -sino) scosw
r r2 J

- -5 COS CO

,(44)



SPHERICAL ELECTROMAGNETIC WAVES. 53

Distinction between Light and Electric Waves
;
the Quantity n.

The expressions for the electric moments X, Y, Z are composed each

of three terms, arranged according to the different powers of - or n.

The order of magnitude of any such term evidently depends not only

upon these powers of - and n, but also upon the actual distance r from

the given source and the value of the quantity n. There are now two

classes of electromagnetic waves, characterized by n's of quite different

orders of magnitude and between which we shall, therefore, have to

discriminate; these are the light-waves proper and the electric (Hertzian)

waves. The former have wave-lengths of the dimensions 10~3 mm.
;

by formula (31) n would, therefore, be very large for all light-waves.

On the other hand, the wave-length A of the electric waves proper is of

the dimensions of the metre or of the other quantities (r) that appear
in formulae (43) for the given electric moments

;
their n would, there-

fore, be of the same order of magnitude as their A or the other quan-
tities. It thus follows : For light-waves, the second and third terms of

the expressions for the electric moments Jf, Y, Z of formulae (43) will be

very (infinitely) small in comparison to the first terms of the same, and

may, therefore, be rejected not alone at great or finite distances from

the source due to the functions but also in its immediate neigh-

bourhood due to the value of n
;

in other words, the amplitude of

the secondary wave that accompanies any (primary) light-wave will be so

very (infinitely) small in comparison to that of the light-wave proper,

that we cannot expect to detect the same except in the .source itself.

Consequently, we may conceive light-waves proper as unaccompanied

by secondary electric disturbances. For electric waves, the second and

third terms of the given expressions will vanish, when compared with the

first terms of the same, only at greater distances from the source
;
the

primary electric wave will thus be accompanied by a secondary electric

wave to a considerable distance from its source, the intensity of the latter

evidently being of the same order of magnitude as that of the former

in the immediate neighbourhood of the source, but decreasing somewhat

more rapidly than that of the primary wave, as we recede from the

same. On the other hand, the secondary wave will evidently be repre-

sented by the second terms of the given expressions, except in the

immediate neighbourhood of the source.

For one and the same amplitudes av <i
2,

a
3
the amplitude of the light-

wave would be very (infinitely) large in comparison to that of the

electric wave. To obtain amplitudes of the dimensions of those of the

light-wave or of the same dimensions as the amplitudes of the electric
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wave for the light-wave, we replace the quantities a
1? 2 , 3 ,

the ampli-

tudes of the functions fv /2 , /3
for electric waves, by the quantities

*h. ^2 ^s. respectively for the light-waves, where m2 shall denote a

m2 ' m2' m2'

quantity (number) of the same order of magnitude as n the secondary

electric light-wave will then vanish, as above, whereas the wave-length

A will remain unaltered.

Electric and Magnetic Oscillations at to each other. To confirm

the general law that "the electric and magnetic oscillations take

place at right angles to each other" in the given case, we must

employ the explicit and not the approximate expressions for the

moments. Let us denote the quantities of the first and second orders

of magnitude in -
by suffixing the indices 1 and 2 to the same

;
we can

then write

where the quantities or terms of the third order of magnitude in ,

X
s ,

7"
3, Z^ have been rejected (cf. p. 52) ;

for the proof of the given

general law, where the terms of the third order of magnitude in are

retained, see Ex. 10 at end of chapter.

The analytic condition that the electric and magnetic oscillations take

place at right angles to each other, namely,

Xa+Yb + Zc =

(cf. formula (11)) becomes here

(Xl
+ X2) (! + a.

2 ) + (
Y

1
+ Y2) (&! + b

2) + (Zl
+ Z2 ) (^ + c

2 )
= 0.

Since terms of only the same order of magnitude in - can evidently

be compared with one another, this condition can be replaced by the

three,

X^ + Y^ +Z^ =
0, terms of the second order,

(Xl
a
2 +X2

a
l ) + (Yl

b
2+Y2

b
l ) + (Zl

c
2 + Z2

c
l )
= 0, third

and X
2
a
2 + Y2

b
2 + Z2

c
2
= 0, fourth

To ascertain whether these conditions be fulfilled, we replace the

given moments by their values and evaluate the forms f in question.
Let us examine here the second condition

;
we have

Jfjftg + X^a^ = C\a^ 2j (/3
2 + y

2
) 4- 2a(a9/3 + ^

3y)] (a2y rt
3/3),

*The moments a
x and a2 are not to be confounded with the amplitudes al5 a2 , (a3 )

of the wave-functions /ij/2,/3.
t See footnote on p. 42.
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and, similarly,

YJ2 + KA = C[a2
- 2a

2 (a* + 7
2
) + 2/3(V + a,7)](a,a

- al7 ),

and Z& +Z& = C[a3
- 2a

3 (
2 + /3

2
) + 2y(a 1

a + a^)] (afi
- a

2 ),

2?i2 Z)#
where C= o

- sin w cos w.
r%

The coefficient of
j
of the form* of the given condition is thus

-2(F + f)](a27 -a3p)

-
y[a2

- 2a
2 (a

2 + -f) + 2/^a + os7)] + 2a
3a*p

which evidently vanishes. The form itself thus reduces to

a.2P + a
sy)(a 2y

- a^) + [a2
- 2a

2 (a* + f) + 2

the different terms of which evidently cancel one another, and the given
condition is thus fulfilled. The proof of the validity of the other two

conditions offers no difficulties.

Magnetic and Primary Electric Oscillations at 1 to Direction of

Propagation. From a glance at formulae (44) for the magnetic

moments, it is evident that the magnetic oscillations take place at

right angles to their direction of propagation.
It is, likewise, easy to show that the primary oscillations Xv Yv Zl

also take place at right angles to their direction of propagation ;
this is

not, however, true of the secondary oscillations JT
2 , Y^ Z^ as the

ensuing development will show.

Determination of the Angle (/2 , r). Let us, next, determine the

angle of oscillation (/2 , r), which the given secondary oscillations make

with their direction of propagation ;
we denote their resultant moment

by /2 and the direction-cosines of that moment by A
2 , /x2 ,

v
2 ,

as on

p. 43, and we have

cos(/2 , r)
= A

2
a + /*2 + v27

(cf. formula (23)). Replace here A
2, /x2 ,

v
2 by the respective moments

(cf. p. 43) from formulae (43), and we have

[2a2
- 3a.

2 (a* + 7
2
)

[2a3
- 3a

3 (a
2 + /3

2
) + 3y(a l

a + 2/?)] 7 }
cos a>

(aja + a.2/3 + a
3y) cos a>,

2

* See fcot-note, p. 42.
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where /2
is to be replaced by

4- 6 (a^ap + a^ay + a
2
a
s/3y)cos w

=-^W + a
2
2 + a

3
2 + 3 (ajo

We thus have
'

_ }

This general expression for cos (/2 , r) is evidently too complicated to

admit of a simple analysis. In order to acquire some knowledge of the

behaviour of these secondary (electric) waves and among other pro-

perties one of the most important is the variation of their angle of

oscillation throughout the given region we shall undertake to examine

the expression (45) for some particular case, for example, that, where

a
1
= a

2
= a

3
= a.

The expression for cos(/2, r) then reduces to

costf, rH-,=EfcZL ...(46)

Since this expression, as also the general one, assumes one and the

same value along any given vector, it will suffice to examine its

behaviour over the surface of any given sphere with centre at origin.

The evaluation of the same at different points on the surface of any
such sphere will evidently be facilitated by the introduction of the

polar coordinates r, 0, </> employed in the preceding problem (cf. p. 43).

By formulae (25) the given expression (46) can then be written

cog(A
2[coB + 8in*(sin0 + coB0)1

V 6 [1 + sin
</> cos <

(sin 8 + cos 6) + sin2
</>

sin 6 cos 0]

_ 2 [cos <ft + sin
<fr (sin 6 + cos 0}]

V3 [2 + sin 2<(sin + cos 0) + sin2 < sin 20]

To determine the angle (/2, r) at any point, we plot the curves = 0,
15, 30 ... 180 for different values of

<j> between and 360, choosing
the angle (/2, r) its degrees as ordinate and the angle < its degrees

as abscissa. To plot these curves, we shall find it sufficient to

determine the angle (/2, r) for every 15 of <, except in the case of the
curve = 45 between

</>
= 45 and 60 (see below).
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The Hemisphere 6 = to 90. It is evident that the expression for

cos(/2 , r) will remain unchanged when we replace 6 by 90 -
0; hence

we need plot only the curves = 0, 15, 30, and 45, the other curves,
= 60, 75, and 90, being identical to the curves = 30, 15, and

respectively.

The formula (47) for cos(/2, r) reduces for the given hemisphere
to the following :

For (1) (9 = or 90,

v/6(l + sin
(f>cos<f>)

(2) (9=15 or 75,

cos(/9. r) = .

~*

= ...(49)
N/6 (1 + 1-2247 sin

</>
cos

</> + 0*25 sin2<)

(3) (9 = 30 or 60,
2 (cos # + 1 -366 sin <i)cos (/, r)

=
-j

v y y/
; (50)

s/6(l + 1-366 sin cos
</> + 0-433 sin'

2
<)

and (4) 6> = 45,

cos(/2 , r)
= = ^

^
S ^ " sin ^ '

(51)
v/6 (1 + x/2 sin cos </> + 0-5 sin2

</>)

Upon evaluating these expressions for < = 0, 15 ... 180, we find

the values given in foot-note* for the angle (/, r),
which evidently

suffice for the plotting of the curves in question, with the exception of

the curve = 45 between < = 45 and 60. It is now easy to show

that this curve touches the $-axis between these two values
;
in which

case formula (51) would assume the particular form

*The curves

0-0
15

30 *

45

60

75

90

105

120

135

150

165

180

and 54 43'

v/6(l +
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This equation must then serve for the determination of < or that

point, at which the given curve touches the <-axis.

Equation (52) gives

2 (cos
2

< + 2v/2 sin
<f>
cos < + 2 sin2

<) = 3
(
1 + >/2 sin < cos

<f> + sin2
</>),

or sin2
</>
- 2 = - 2\/2 sin

(f>
cos <j>=

- %<J2 sin </>\/l
- sin2

</> ;

which squared gives 9 sin4 <
- 1 2 sin2

( + 4 = 0,

hence sin^=j, or = 54 43', ...................... (53)

which is also included among the values of < in foot-note on p. 57.

We observe that, if the resulting equation for
<J>

had no real root,

the above assumption, that the given curve touch the <-axis, would

have to be abandoned (cf.
Ex. 7 at end of chapter). Upon including

this particular value of
</> among those above, we can plot the given

curves, as in
fig. 6 on next page.

For </>>180 = 180 + <', the general expression (47) for cos(/2, r)

remains unchanged, except in sign, since

sin (180 + (')
= -sin<',

and cos (180 + <f>)
= - cos <'.

It thus follows that

cos(/2 , r)^= -cos(/2 , r)^
= cos{180-(/2 , ?%}

or (/2,rV = 180 -(/,,?%, ........................ (54)

where the indices < and
<f> denote that the angle (/2 , r) is to be taken

in the regions < = to 180 and <' = 180 to 360 (0^0<90)
respectively.

The values of the angle (/2 , r) in the region <=180 to 360

(0^ 0^90) thus follow directly, by formula (54), from the values

for that angle in the region </>
= to 180 (0<<9^90) (cf. foot-note,

p. 57). We can evidently obtain the curves represented by these

values, upon revolving the plane < = to 180 and (/2, r)
= to 180,

together with its curves = 0, 15, 30, and 45, throughf180 about
the line (/2 , r)

= 90 in that plane as axis, and then displacing the

same (plane and curves) the distance 180 along the <-axis.

The Hemisphere = 90 to 180. Our general formula (47) reduces

here to the following :

For(l) <9=105 = 90 + <9' and B = 165 = 90 + 0',

eosC&r)--,
.jfaog^OjyOTlrinJL.

... (55)
x/6(l 0-7071 sin </)COS>

- 0-25
sin*</>)

where the plus-sign is to be taken for 0' = 15 and the minus-sign
for 0' = 75V
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(2)

cos(/2 , r)
=

-j=

]> and 0=150 = 90 + 0',

2 (cos < 0-366 sin <)

x6 (1 0-366 sin < cos - 0*433 si

the plus-sign to be taken for 0' = 30 and the minus-sign for 0' = 60
;

(56)

140"
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[3b^2

15 30 45 60 75 90 105 120 135 150 165 18O

FIG. G.

(3) 0=

cos(/2 , r)
= - C08(f>

.(57)

and (4) 0= 180 = 90 + 0',

/ -
.

* 2 (cos <^>
- sin <t>)

cos(/9, r)
= v y

v/6(l-sin</>cos(/>)

.(58)
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different values ofUpon evaluating these expressions for

between and 180, we observe that

COS (/2 , r)90'+0, 90 -ff= - COS (J , \ 0',

where the given indices denote, as above, that the angles in question

are to be taken in the regions 90 + </>,
90 - 6' and 90 -

<, & respec-

tively, the angles <f>
and & being assigned the values

</>=15, 30, 45, 60, and 75

and & =15 and 30.

It thus follows that

(/2 , r)w+bw-ff = 180 -
(/2 , r) 9o-4>, v ................ (59)

(cf. formula (54)).

By this and formulae (55) (58) we find the values given in foot-

note* for the angle (/2, ?),
which give the six curves of fig. 7 on next page.

As above, the expressions for cos (/9 , r) remain unchanged, except in

sign, when we put < 180 + <'
;

it thus follows that

The values of the angle (/2, r) in the region < = 180 to 360

(90 ^0^180) thus follow directly from those in the foot-note*

below, whereas we can obtain the curves represented by the same,

as above, upon revolving the curves 0' = 15, 30 ... 90 through 180

about the line (/2 , r) = 90 as axis and then displacing the same the

distance 90 along the <-axis.

It is evident from the above systems of curves that :

1. The given (secondary) oscillations are longitudinal along the two

vectors (9 = 45, </>
= 54 43' and 6> = 45, = 234 43'.

2. The longitudinal oscillations (1) take place in opposite directions

with regard to their vectors or in the same direction in space.

*The curves 0' = 15,
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The Longitudinal P ndary Electric Wave. We have seen on

pp. 50-51 that the sec' ^rv (electric) wave was unaccompanied by either

a primary (electric L $ nagnetic wave along the two vectors a : ft : y
= a

l
:a

2
:a

B
'

}
these were the only vectors, along which the primary

(electric) or magnetic wave did not appear. From the given formulae

(/2 r)

^6(f

150

140

130

120

110

100

90

80

70

ff $

50

40

30

15" 30 45 60 75 90

FIG. 7.

120 135 150"

for the secondary (electric) wave along these vectors it is evident

that these secondary oscillations take place along those vectors, that

is, that they are longitudinal along the same. It is now easy to show

that these longitudinal oscillations and those of (1) and (2) above

are the same, the latter corresponding only to the particular case

of the former, where a
l
= a

2
= a

s
= a. It thus follows that the longi-

tudinal oscillations of (1) and (2) are unaccompanied by either a
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primary (electric) or a magnetic wave
;
hence the general law : In

those regions, where the primary (electric) and magnetic waves fail to

appear, the secondary (electric) wave is longitudinal and conversely

the longitudinal secondary (electric) oscillations are thereby charac-

terized that they are unaccompanied by either a primary (electric) or

a magnetic wave.

The Transverse Secondary Electric Wave. By formulae (46) the

secondary (electric) oscillations are transverse throughout the plane

a + P + y = Q(iil
= a

2
= a

s),..-
...................... (60)

which passes through the origin. Throughout this plane the electric

moments evidently assume the simpler form

X, Y, Z
l- ==

or the moments of the primary (electric) wave are independent of the

direction-cosines, and

or the moments of the secondary (electric) wave are also independent
of the direction-cosines. It is evident that the primary and secondary

waves, represented by the more general formulae (43), possess this same

property throughout the plane a
:
a + &

2/3 + a
3y = 0.

By formulae (44) a
x
= a

2
= a

3
the resultant moment of the magnetic

wave is

= T \/2-2(a/3 + ay + j3y)
(-sin to - ^

The secondary (electric) oscillations are transverse throughout the plane
a + J3 + y 0, that is, here the relation holds a + /3 + y = 0, which squared

gives a2 + ft
2 +f + 2 (a/3 + ay + /3y)

=
0,

or, since a2 + p2 + y
2 = 1

,

2(a/3 + ay + /3y)= -1 ............................ (61)

The analytic relation (60) between the direction-cosines can thus be

replaced by this relation (61), and hence the above expression for the

resultant magnetic moment throughout the plane a + /3 + y = written

/~i 9
-

9 \f3nvQ (n . 1 \
v/a

2 + 62 + c
2 = -sin co -cosw,

v \r r* /

or the resultant moment of the magnetic wave is here independent of the
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direction-cosines. It is also easy to show that the resultant moment of

the magnetic wave represented by formulae -

(44) ^ < a
2 < a

z
is

independent of the direction-cosines throughout the plane a^ + afl

+ a
3y = (cf.

Ex. 16 at end of chapter).

The above results can evidently be summed up as follows :

The transverse secondary (electric) wave is thereby characterized

that (1) its amplitude is independent of the direction-cosines, depending

only upon r, the distance from the source, and (2) it is accompanied by
a primary (electric) and a magnetic wave, whose amplitudes, likewise,

depend alone upon the distance from the source
;
and conversely, in

those regions, the plane a^ + a
2/3 + a

3y = 0, where the amplitudes of the

primary (electric) and the magnetic waves are functions only of the

distance from the source, the secondary (electric) wave is transverse.

The Primary Electric Waves. -The primary wave of this problem
differs only immaterially from those of problems 1 and 2

;
it is the

(primary) electromagnetic or light-wave, with which we are already
familiar

;
it reveals only another law of distribution of the amplitudes

with regard to magnitude and direction of oscillation (over any given

sphere).

The Secondary Electric Waves; the Eoentgen (X) Bays. The

secondary wave of the given problem is also similar to those of the

preceding problems, in that it belongs to one and the same class of

wave-motion, namely that which is thereby characterized that the

oscillations do not, in general, take place at right angles to their

direction of propagation. Moreover, the secondary waves of all three

problems display certain properties that are common to all. One of

the most striking such properties is that there are certain regions,

throughout which the secondary (electric) wave is unaccompanied by
either a primary (electric) or a magnetic wave, and that in those

regions the secondary wave is longitudinal ;
in problem 1 the given

region was the -axis (cf. Ex. 12), in problem 2 the y- and ^-axes

(cf. p. 39) and in problem 3 the vectors a : ft : y = a^ : a
2

: a
3 (cf. p. 61).

In this respect the longitudinal secondary electric waves would resemble

the Roentgen (X) rays, which have not yet been found to be influenced

by magnetic disturbances. Another similarity between these waves

and the Eoentgen rays is the empirical confirmation* that the latter

advance with the velocity of light, which is evidently the velocity

of propagation of the former (cf. formulae (43)). As to the law of

intensity of the Eoentgen rays, the few empirical data we have would

* " Sur l'egalit<$ de la vitesse de propagation des rayons X et de la vitesse de la

lumiere dans 1'air." Note de M. R. Bloiidlot. Comptes Rendus, Tome CXXXV.,
No. 18, Nov., 1902.
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tend to show that it is not according to the inverse square of the

distance from source, but that their intensity diminishes much more

rapidly, perhaps according to the fourth power of the distance, the law

of variation of our secondary electric waves.

Summary. Lastly, let us compare the results found on pp. 61-62

pertaining to the longitudinal and transverse secondary (electric) waves

and their respective primary (electric) and magnetic waves of pro-

blem 3 with the results of Exs. 2, 4 and 12-16 at end of chapter

pertaining to the respective waves of problems 1 and 2
;
we find the

following general results :

1. In those regions, where the primary (electric) and the magnetic
waves do not appear, the secondary wave is either longitudinal, as in

problems 1, 2 and 3, or it does not appear at all, as in problem 2 along
the ic-axis.

2. The longitudinal secondary (electric) wave is unaccompanied by
either a primary (electric) or a magnetic wave (problems 1, 2

and 3).

3. In those regions, where the secondary (electric) wave is transverse,

its amplitude is independent of the direction-cosines, that is, one and

the same for any r = const.
; and, conversely, in those regions, where

the amplitude of the secondary (electric) wave is independent of the

direction-cosines or a function only of r, the same is transverse

(problems 1 and 3).

4. The transverse wave is accompanied by a primary (electric) and a

magnetic wave, whose amplitudes are independent of the direction-

cosines, that is, remain the same for any r = const.
; and, conversely, in

those regions, where the amplitudes of the primary (electric) and

magnetic waves are independent of the direction-cosines or functions

only of r, the secondary (electric) wave is transverse (problems 1 and 3).

3 and 4 do not hold for the waves of problem 2
;
the explanation of

this is evidently to be sought in the particular form chosen for the

auxiliary functions Z7, V, IF, which are unsymmetrical with regard to

the coordinate-axes. On the other hand, we call special attention to

their validity for the waves of problem 3, where the auxiliary functions

Uj F, W have been chosen symmetrical with regard to the x, y, z axes,
but as derivatives of three arbitrary wave-functions <

1?
<

2 ,
<

3 ,
since

waves of most various types can evidently be represented by the

derivatives of three such arbitrary functions (a^ < % < a
3 ).
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EXAMPLES.

1. The Hertzian oscillations are represented by Hertz by the following deriva-

tives of the function II, which is assumed to be a purely spherical wave-
function :

P__^n ,._ d?n
J?_d?n ^n

dxdz' V-~djd~z> *-dtf +
df'

, _ i d2n i d*n _ Aand a=~-^rr> P=--^m~t 7=0,v dtdy v dtdx'

where P, Q, R (X, Y, Z}* and a, p, y (L, M, N)* denote the electric and magnetic
forces respectively,t

Show, on assuming that the function II has the form

_El sinm(r-vt)
-~r~

where El is a constant and w=
^,

that P, Q, R and a, /3, 7 are given by the

expressions

Elmcosm(r-vt)

and a = - Elm- sin m(r-vt) +^ Elm cosm(r -
vt),

p= Elm?sin m (r
-

vt)
-

-^ Elm cosm (r
-

vt),

7=
r

(cf. formulae (39), p. 83, of my Theory of Electricity and Magnetism), where a, ft, y
are the direction-cosines of r.

These (Hertzian) oscillations are evidently those already examined in problem 1

of the text, being referred only to a different system of coordinates (cf. formulae

(10) and (13)).

2. Show that region 3 of problem 2, determined by the analytic conditions

comprises the two regions /3 = or the #s-plane and a2 + 27
2= 0, hence /3

2=1 or the

; and that throughout the former the resultant electric moments are

and along the latter

* The Hertzian notation.

t Cf. Hertz, Untersuchungen ueber die Ausbreitung der elektrischen Kraft, p. 150

and Curry, Theory of Electricity and Magnetism, formulae (28) and (29), p. 77.

E
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Throughout the xz-pl&ne both the primary and secondary oscillations thus take

place in that plane, whereby the intensity of the former is a function of the

direction-cosines a and y and that of the latter a function of 7 alone, whereas

along the y-axis the primary wave disappears entirely and the secondary one is

propagated as a longitudinal wave.

The moments of the magnetic wave that accompanies the given electric wave are

v ay d(d*f 3df 3
a= c = Q, &= -___^_--_ + _

throughout the a-z-plane, and
a=b=c=Q

along the y-axis. The magnetic oscillations of the xz-plane thus take place at

right angles to that plane, whereas no magnetic disturbance whatever appears

along the y-axis.

The only disturbance that appears along the y-axis is, therefore, a secondary

(electric) wave, which is propagated along that axis as a longitudinal wave. The

appearance of a secondary (electric) wave, unaccompanied by either a primary

(electric) or magnetic wave, along one vector, at least, is thus consistent with our

differential equations.

3. The analytic conditions

/3(a
2 + 27

2
)
=
0,_a(/3

2 -72
)
= 7(a

2 + 2/3
2)>0

determine the region a=-y=^ y
= or & straight line passing through the

origin, lying in the sez-plane and bisecting the quadrant x, -z; the resultant

moments along this vector are

i

-5:

4. Examine the electric and magnetic waves in region 4 of problem 2.

Show that a secondary (electric) wave, unaccompanied by either a primary (elec-

tric) or a magnetic wave, is propagated in longitudinal oscillations along the z-axis.

5. Show, when a
1
= a2 ='aS) that no region is determined by the following

particular form of formulae (35) :

6. To find in problem 3 the electric and magnetic moments in the region deter-
mined by the analytic conditions

a
27-a3/3

= 0, Ojja

(cf. formulae (42) ), replace /3 and 7 by

in formulae (36) and (40) respectively.
Also show that no region is defined by the analytic conditions

7. The curves = 0, 15, and 30 of Fig. 6 (p. 59) do not touch the 0-axis.
For = our general formula (47) would reduce to the following at any point

on the 0-axis :

(a)

which would give sin 20= 2.
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Since the sine of an angle cannot be greater than unity, it follows that there is

no value
<f>

that satisfies the given equation (a) (assumed), and hence that the

given curve does not touch the 0-axis. We find similar equations, that cannot

be satisfied, for = 15 and = 30.

8. In problem 1 show that the angle of oscillation of the secondary (electric)

oscillations is given by 9a

moreover, that the angle of oscillation of the (electric) oscillations represented by
the terms of the third order of magnitude in - is given by the same expression (a)

with sign reversed.

9. Show that the electric oscillations of the third and fourth orders of magni-

tude in - of problem 2 make one and the same angle of oscillation with their

direction of propagation, namely

r8

)
3 v/4 + 5 sin2 cos220

To find this expression, write the coefficients of the given component moments
in the form

15a N/( 1 + a2
) (/3

2 + 72
7-~4/3V, 3/3 (5a

2 + 107
2 -

3), 3y (5a
2 + 10/3

2 -
3).

Show that the oscillations in question, those represented by the terms

of the third and fourth orders of magnitude in -, are transverse or longitudinal

in the same regions, in which the secondary oscillations that are represented by

the terms of the second order of magnitude in - are transverse or longitudinal

respectively.

10. In problem 3 show that the electric oscillations that are represented by

the terms of the third order of magnitude in - make the same angle of oscillation

with their direction of propagation as the secondary electric oscillations that are

represented by the terms of the second order of magnitude.
It thus follows that the secondary electric oscillations proper or those represented

by the terms of all higher orders of magnitude in - than the first are transverse or

longitudinal in the same regions, in which the secondary electric oscillations that

are represented alone by the terms of the second order of magnitude are

transverse or longitudinal respectively. This law is quite general (cf. Exs. 8

and 9).

11. In problem 3 the electric and magnetic oscillations take place at right

angles to each other this has been proved on pp. 54-55 for only the approximate
values of the moments. To confirm this law for the exact values of X, Y, Z and

a, b, c, we evidently need prove the validity of only the two additional equations

X3a,+ ^ + 2.^=

and X,a2 + F362 +Z3c2
=

(cf. p. 54). Since now the moments JT3 ,
Y3 ,

Zs and X^ Yz , Z2 have one and the

same coefficients in a
lt
a2 ,

a3 and a, (3, y (cf. formulae (43)), and the moments a2 ,

&2 ,
c2 and a1? 61} c

a
also (cf. formulae (44)), the validity of these two equations

follows directly from those confirmed on pp. 54-55.
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Moreover, since both ^2ai + -^2^1 + ^2ci

and X^+Y^ + Z.c^O,

it follows : The electric and magnetic oscillations of not only the same but

different orders of magnitude in - take place at right angles to each other. It

would, therefore, be impossible to separate or pair off the electric and magnetic

waves of the same order of magnitude by means of the property that they take

place at right angles to each other.

12. In problem 1 the only region, in which primary (electric) and magnetic

waves do not appear and the secondary (electric) wave becomes longitudinal, is

the x-axis.

By the formulae on p. 35, the moments of the given primary wave are

and those of the secondary

3a/3df 3a7 df

where we have rejected the terms of the third order of magnitude in -.

The resultant moment of the primary wave is thus

W+ I

which can vanish only when /3
2 + y2

0, hence a2 I, or the x-axis.

Replace X2 , yw2 ,
v2 by their values from formulae (6) (cf. p. 43) in formulae (23)

for cos(/2 ,
r )) and we have

- 12 (/3
2 + 72

) + 9(p + 72
)

2 + 9a'^
2+ 9a2

7
2

(ef)

That these oscillations be longitudinal, we must evidently have

'
=
N/4-3(/^ + 72

)'

hence 4-3(jS
2 +72 )

= 4a2
,
or a2 =1, or the x-axis.

The resultant moment of the magnetic wave is

r dtdrrdt

(cf. formulae for a, 6, c on p. 33) ; that this moment vanish, we must have

/3
2 + 72= 0, or the x-axis. Q.E.D.

13. In problem 1 the secondary (electric) wave is transverse throughout the

yz-plane only, throughout which both its resultant moment X2 , F2 , Z2 and
those of the primary (electric) and the magnetic waves are independent of the

direction-cosines, that is, are constant for r= const.

By formula (d), Ex. 12, the given secondary oscillations are evidently trans-

verse only, when a = 0, that is, throughout the yz-plane.
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By formula (>), Ex. 12, the resultant moment X2 ,
Y

Z)
Z2 is

,

or throughout the yz-plane, where the secondary wave is transverse,

*/XJ+Y* + Z*= - 4.
2 r dr

By formulae (c) and (e), Ex. 12, the resultant moments Xv Ylt
Z

l and a, &, c are

evidently independent of the direction-cosines throughout the yz-plane. Q.E.D.

14. In problem 2 show that the secondary (electric) wave is longitudinal along
the y- and z-axes only, whereas primary (electric) and magnetic waves fail to

appear along all three coordinate-axes.

15. In problem 2 the secondary (electric) wave is transverse throughout the

planes p?= y
3:

(cf. p. 44) ; show that throughout these planes the resultant moment
X2,

Y2 ,
Z2 and those of the primary (electric) and magnetic waves are functions

of the direction-cosines, that is, vary for r= const. ; moreover, that the only regions,

where the resultant moments Xlt Y^ Z
l and a, 6, c are independent of the

direction-cosines, are the y- and z-axes, along which the same vanish entirely.

16. The amplitude of the magnetic wave of problem 3 is independent of the

direction-cosines throughout the plane

a
1
a + a

2j
8 + a37 = ........................................ (a)

By formulae (44) the resultant moment of the given wave is

sin u -
2
cos w *J(a.2y - a

3J8)
2+ (a3a

- al7)

2 + (a^ - a2a)
2

= -I - sin w ^ cos w

x \V (/3
2 + 72

) + a2
2
(a

2 + y2
) + a3

2
(a

2 + jS
2
)
- 2(a^ap + a^ay + a2a3py)....... (b)

The condition (a) representing the plane, throughout which the given secondary

electric wave is transverse, can now be replaced by the condition

or a
x
2a2 + a2

2
/3
2 + a3

2
7

2 + 2
( 1

a2a/3 + a^ay + a.2a3^y) = ;

by which the expression (b) for the resultant moment can be written

Ti ~~j 'tt-O / '

+ &<* + c- = "

(

- sin w , cos w
y \ r r^

^jS
2 + y2

) + a2
2
(a

2 + yz
) + 0^(0? + jS

2
) + a^a2 +a^2 + a3V,

or, since a2 + /3
2 + 72 =l,

/~o rr, o wvn /% . 1 \ / 5 9 5-

va2 + b2 + c2= -
1
- sin w ^ cos w I vaa

2 + <,' + s ,
-

v \r r2
J

which is independent of the direction-cosines.

17. Examine, in detail, problem 3 for the particular case, where



70 ELECTROMAGNETIC THEORY OF LIGHT.

18. Show, on replacing the functions/15 /2,/3 of formulae (29) by

2-7T

/!=:! sin (vt-r),

2?r

y (vt-r),

n

(vt-r),

that the primary electric wave is represented by the moments

the secondary electric wave by the moments

and the magnetic wave by the moments

a = -
(as/3 cos w - a.2y sin co) + 2 (047 cos co + a3/3 sin w) ,

b= (a3a cos w -
0^7 sin w) + -

2 (0^7 cos w + a 3a sin a>)

c = (otjjS
- a2a) sin w

^ (
ai/^

~ aaa )
cos w r

19. Show that for the electromagnetic waves of Ex. 18 the analytic relation

holds

or the resultant electric and magnetic moments are always at right angles to each

other.

20. Show that the primary (electric) oscillations of Ex. 18 take place in planes
that are at right angles to the direction of propagation, and that the angle
between the vector^ of any element of the secondary (electric) oscillations of the

same and the direction of propagation is for the particular case, where a
1
= a2

= a3 ,

determined by the formula

COS2(/
-

r)=_ _
1

(
1 + 3y*) sin*w + ISay sin co cos u + [2 + 6a/3 + 3 (a

2 + /3
2
)] cosV

or in polars

8 [
- sin sin 6 sin a; + (cos + sin cos 6) cos co]

2

>s Us. 7
'
-
2 ( i + 3 sin2 Bina0) sinaw + 9 sin 20 sin 6 sin 2w

+ 2 [2 + 3 (cos
2 + sin 20 cos + sin2 cos20)] cos2w.
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21. Show that there is no vector, along which the magnetic moments of Ex. 18

vanish, provided as<0 ; and that for a3
= they vanish along the vectors

0= -^ <
,= "_^ 7=0l

Veii
2 + a2

* V!2 + a.2
2

along which the electric moments assume the form

, v n cosw
and JT2= 2na

l ^
cos w

22. Examine, in detail, the electromagnetic waves of Ex. 18 for the particular

case, where a.2
= 0.



CHAPTER III.

LINEARLY, CIRCULARLY, AND ELLIPTICALLY POLARIZED

OSCILLATIONS ;
GENERAL PROBLEM OF ELLIPTICALLY

POLARIZED ELECTROMAGNETIC OSCILLATIONS.

Different Kinds of Light. In the foregoing chapters we have

examined certain periodic oscillations of the ether without attempting

to identify them directly with what we call "light"; still, we recog-

nize, if light is to be regarded as an electromagnetic phenomenon, it

has already been identified with that periodic state of the ether, where

two kinds of transverse oscillations, known as the electric and magnetic,

which are closely allied to each other (cf. Chapter II.), are taking place

(at right angles to each other). Whether the light-wave is to be

regarded as a particular kind* of electric or magnetic disturbance is a

matter of little consequence. Likewise, no attempt was made in

Chapters I. and II. to discriminate between the different kinds of

light. The first distinction to be made is that between ordinary
and so-called "polarized" light.

Polarized Light. A ray of light is termed "polarized" when its

behaviour is not one and the same round its direction of propagation,

circularly polarized light excepted f ;
the (extraordinary) ray that

emerges from a plate of tourmaline and passes through a second such

plate is known to vary in intensity, as we rotate the latter (plate) round

the ray (its direction of propagation) ;
the ray emerging from the first

plate is thus termed "polarized." Or, to express ourselves analytically,

we call a ray
"
polarized

" when its wave-front elements describe similar

and similarly situated paths (during given finite intervals) ;
if the paths

* Oscillations of very short wave-lengths, those of light waves.

t Although circularly polarized light exhibits the same properties round its

direction of propagation, it differs materially from ordinary light, as Chapter VIII.

on the behaviour of light in crystals will show.
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described are parallel straight lines, the ray is termed "linearly"

polarized ;
if the given paths are similar and similarly situated ellipses

or circles, the ray is then said to be "
elliptically

"
or "circularly"

polarized.

One of the simplest kinds of linearly polarized oscillations or waves

can be represented by equations of the form

y = a sin^ (vt
-
x\ (1)

which represents an infinite succession of similar changes or vibrations

in a given (the xy-) plane. Equations of this form may be used to

represent linearly polarized light.

Ordinary Light. When the behaviour of a ray is one and the same

round its direction of propagation, or, more strictly, when the particles

or elements of its wave-front describe quite arbitrary paths or similar

and similarly situated paths for only infinitely short intervals, the ray

(light) is termed "
ordinary." We can thus imagine any particle of an

ordinary light ray as oscillating for an infinitely short time in any

given path, for example, in a straight line, in the next interval in

another path, a flat ellipse, then in a circle, and so on, and assume the

number of such changes in polarization during the (finite) interval

required for light to impart an impression on the retina of the eye to

be so large that the mean of the displacements in any and every
direction (at right angles to the direction of propagation) during that

interval becomes approximately one and the same. This conception of

ordinary light not only explains the empirical fact that a ray of

ordinary light shows one and the same behaviour round its direction

of propagation, but it also agrees with the observations made by

Michelson,* that a change of polarization is possible after the elapse of

540,000 vibrations, which would correspond to thousands of changes in

polarization during the interval required for an impression of light on

the retina of the eye. Moreover, the given conception will enable us

to explain certain empirical laws on the interference of polarized and

ordinary light (cf. Chapter IV.).

Homogeneous waves are those of one and the same wave-length (colour)

or period of oscillation and heterogeneous those of different wave-lengths

(colours) or periods of oscillation
;
when the different wave-lengths are

equally represented in the given waves, we have waves of so-called
"
white

"
light.

Plane of Polarization. The methods for obtaining polarized from

ordinary light are familiar to us all
;
of these that by reflection is of

*A. A. Michelson: American Journal of Science, vol. xxxiv. p. 427, 1887.
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special interest on account of the terminology used. We know,

namely from experiment, that there is one angle of incidence, the

so-called "
angle of polarization

"
or the "

polarizing angle," for which

ordinary light upon falling on certain bodies, as a glass mirror, is

reflected as linearly polarized light. If we now let this linearly

polarized light fall at the polarizing angle upon a second mirror, the

intensity of the reflected light will be found to depend upon the angle

the plane of incidence chosen makes with the first plane of incidence
;

namely the smaller this angle the greater the intensity, and the

nearer this angle approaches a right angle the smaller the intensity.

That particular plane of incidence, in which the light is most copiously

reflected, is now known as the "plane of polarization"; this plane

is evidently the plane of incidence or reflection of the polarizing

surface or first mirror. Since now the oscillations reflected from

the polarizing surface or the first mirror evidently take place in

some particular plane, as an examination of them by the polariscope

will show, it is natural to assume some characteristic plane as plane
of oscillation

;
this would naturally be either the plane of polarization

or that at right angles to it. In the elastic theory of light it is a

pure matter of taste, which of these planes be chosen as plane of

oscillation
;

Fresnel assumes that the light oscillations take place

at right angles to the plane of polarization, and Neumann in

the plane of polarization. In this respect the electromagnetic

theory of light differs materially from the elastic
;

the former

demands two just such characteristic planes (at right angles to

each other), the one for the electric and the other for the magnetic
oscillations

;
which one of these, the plane of polarization or that at

right angles to it, be the plane of (electric) oscillation, is also

apparently a matter of choice
;

this is not, however, the case, as

the chapter on the behaviour of light in crystals will show;
we shall find, namely, that the electric oscillations take place
at right angles to and the magnetic ones in the plane of polar-

ization.

Elliptically Polarized Oscillations. We know from experiment that

it is possible to obtain other kinds of polarized light than the linearly

polarized, also that the most general form of polarization is the

elliptic. This suggests the supposition, that an elliptically polarized
oscillation be identical to two linearly polarized oscillations of the

same period of oscillation, but of different amplitudes and phases,
that are taking place at right angles to each other; this is only
another or somewhat more general form of the principle of the resolu-

tion and composition of forces or displacements. Let us examine
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the resultant of two such oscillations, for example, the two rectangular

(linearly polarized) periodic oscillations

y = 2
sin n [vt ~(z + 8

2) ] (n
=
-~J

I

^

I, ......... (2)

their planes of oscillation being the xz- and 7/2-planes, and the direction

of propagation the z-axis, where \ - 8
2

denotes their difference in

phase. To find the path described by any element under the simul-

taneous action of these two displacements (oscillations), we must

eliminate the time t from the two equations (2). For this purpose

we write the same explicitly

x =
ttj

sin n(vt
-

z) cos n8l
-

a^ cos n(vt
-

z) sin n8
l

y = a
2
SU1 n (vt

~ z
)
cos n&2

~ a
2
cos n

(
v^ ~ z

)
s^n n^2 *

which give
/> nt
'

cos n8
2
- cos n8

1
= - cos n(vt

-
z) sin n(j

- S
2)a -i v

/y*
fit

and sin n8
2
- sin ^S

T
= - sin n(vt

-
z) sin n(8l

- 8
2) ;

and these, squared and added,

x*_ ^_ 9_y /g _g \_ *

2
/<$ _g \ (3)

a^ a
2
2

ci^a 2

This is the equation of an elliptic cylinder (cf. Ex. 22), whose

infinitely long axis is the -axis. The path of oscillation of any

particle of the wave represented by formulae (2) is evidently the

ellipse intersected by this cylinder on the plane z = a, where a denotes

the distance of that particle from the origin. It thus follows that

two linearly polarized oscillations of the form (2) compound to an

elliptically polarized oscillation.

Mode of Propagation of Elliptic Oscillations. To form a conception

of an elliptically polarized wave, we choose its direction of propagation

as axis of an elliptic cylinder, and imagine a wire wound loosely round

that cylinder; the spiral described by the wire would represent an

elliptically polarized wave at any given time, and the uniform dis-

placement of that spiral along the surface of the cylinder in the

direction of its axis, the manner in which that wave were propagated.

For a circularly polarized wave the elliptic cylinder would have to be

replaced by a circular one.

Circularly Polarized Oscillations. Let us examine the analytic

equation (3). That the oscillation (polarization) (3) be circular, the

following conditions must evidently be satisfied :

a
l
= a

2,
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or the amplitudes of the given oscillations (2) are the same, and

cos?i(S1
-S

2)
=

J
hence w(S1

-S
2)=- or ,

2?r A 3A
or, since n = -T-, ^ - o

2
= or

-^-,

or the oscillations differ in phase by quarter of a wave-length.

We must, however, discriminate here between the two cases

\
s\\

\-^ =
\

and \-^ = -~\

in the former the circularly polarized oscillations are evidently repre

sented by equations of the form

x = a sin n [vt -(2 + 5
1 )],

y = a sin % ^ f^+Sj -r)
\ o> cos n [vt

-
(z + Sj)],

and in the latter by x = a sin n [vt -(z + 6^],

y = - sin TI \vt - I z + 8
l
-

j

= - a cos n [v^
-

(z + S
1 )].

Eight and Left-handed Circular (Elliptic) Oscillations. The differ-

ence between the two above circular oscillations or waves becomes

apparent upon the determination of their so-called "azimuths"; the

azimuth is the angle < (cf. the above figure), which the vector from

the position of rest of any given element (particle) to any point of

the path described by the same makes with any such fixed vector,

as the #-axis. Let us denote the azimuths of the two oscillations in

question by <^ and
</>2 respectively, measuring the same from the

y-axis, as indicated in figure 8; we have then

</>!
= arctan - = n[vt- (z + Sj)],

<
2
= -n[vt-(z
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As t increases, <
x
increases and <

2 decreases. For an observer at any

point on the positive -axis, along which the given waves are advancing,

<j is thus rotating from right to left and <

2 from left to right; the

former is, therefore, known as a "left-handed" and the latter as a
"
right-handed

"
circular oscillation. The same distinction is, of course,

to be made between the elliptic oscillations.

Linearly Polarized Oscillations. That the resultant of two rect-

angular linear oscillations remain linear, sinii(81
-5

2)
of formula (3)

must evidently vanish
;
that is,

n(8l
-8

2)=s Q or TT,

hence

In which case formula (3) reduces to

i

hence -- ==

or
x 2

respectively ;
which are the equations of straight lines.

The component rectangular oscillations sought are, therefore,

x = a} sin n [vt
-

(z + 8
2)1

y = #
2
sin n \vt (z + 8

2)],
for 8

1
- &

2
=

0,

and x= -a
l smn[vt-(z + 8

2)],

y = a
2siun[vt-(z + 8

2)],
for ^-8^ = -^',

hence tan d> = ,

a
2

or the azimuth is constant, that is, the resultant oscillation is linear

in both cases, X
8
1
-8

2
= and jr.

The resultant amplitude is in both cases

/ sin n [vt -(z + 8
2)].

The Elliptic Polarization the most general. We have seen on

pp. 74-75 that two rectangular oscillations of the form (2) compound to

an elliptic oscillation. Let us next show that the path described by any

particle under the simultaneous action of three rectangular (linear)

periodic oscillations of different amplitudes and phases, but of the

same period of oscillation, is an ellipse, that is, that the most general
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form of polarization, obtained from the composition of rectangular

(linear) oscillations, is the elliptic. Three such rectangular oscillations

are

To determine the path described by any particle under the simul-

taneous action of these three oscillations, we must eliminate the

time t from the same. We first write the given expressions (4)

explicitly, namely,

x = a
1
sin nvt cos n8

1 ^ cos nvt sin n8A

y = 2
sin nvt cos n8

2
- a

2
cos nvt sin n82 V, ............... (4A)

2 = a
3
sin nvt cos nS

z
a
Bcos nvt sin n8

B }

ltiply the first by
n

(
8*~ 8

*\ the second by
sinn^" 5

i) and themu

third by
sin?l (

5
i
-^2), add, and we have

sin n(89
- 8

3)
sin w(83-^)

=
(sin witf cos ftSj

- cos 71^ sin nS^ (sin %82
cos w53

- cos 7i8
2
sin n8

3]

+ (sin nvt cos %8
2
- cos nvt sin %S

2) (sin %S3cos 7i8j
- cos 7iS

3
sin wSj)

'
'

+ (sin ?i^ cos nS
3
- cos wz/^ sin n8

s) (sin TI^J cos n82
- cos ^Sj sin n82)

=

that is, since a Zmmr equation holds between the three variables x, y, z,

the path of oscillation of the given particle will lie in a plane, the

one determined by that (linear) equation.

To determine the path described in the plane of oscillation (5), we

seek relations between the different pairs of the three variables, z, y, z,

which will give the projections of the path of oscillation on the

coordinate-planes.

The first two equations (4A) give

, . _ ,

l y=- sin nvt sin
fi(8j

- 6
2)

fli

cosw<59 cosn8-, /w xana - x - L y=- cos nvt sin n
(6-.

- o
2) ;a

i
a
%

and these, squared and added,
o o

^ +^ - 2 008^(8,
- 8

2 )
^- = sin2w(81

-
8,),

a^ af
2/
a^2

with similar equations in x, z, and y, z, which is the equation of an



ELLIPTICALLY POLARIZED ELECTROMAGNETIC WAVES. 79

ellipse (cf. Ex. 22 at end of chapter). The projections of the path of

oscillation on the coordinate planes are, therefore, ellipses, that is, the

path of oscillation itself is an ellipse (in the plane of oscillation (5) ).

The rectangular oscillations (4) thus represent an elliptic oscillation,

and hence conversely the elliptic oscillation (polarization) is the

most general form of oscillation (polarization), as maintained above.

The Electromagnetic Waves of Chapter II. The oscillations just

examined represent fundamental types of polarized wave-motion
; they

are, in the strictest sense, polarized oscillations. Electromagnetic

waves, like light waves, may be either polarized or not; those

examined in the preceding chapter are not, strictly speaking, polarized,

except at infinite distance from their source. At greater distances

from its source any such electromagnetic wave or ray may now
be regarded as polarized, since the paths described by the different

elements of its wave-front remain approximately similar and similarly

situated (during finite intervals). Although the disturbances treated

in the preceding chapter are not, in the strictest sense, polarized,

it is, nevertheless, of interest to examine the paths described by the

elements of given rays of the same
;
we shall find that they are

linear.

The primary (electric) oscillations of Problem 1, Chapter II., are

represented by the moments

Y _P* + y*d?f F __/^2/ _asL d*f
l
~

r dry l
~

r df l r dr*

where D = 1 . To find the path described by any element (at any
d2f

given point), we eliminate the time t or v^ from these formulae, and

we have

X1
:F1:^HP+>:-0:-yJ

which is the equation of a straight line
;
for different values of a, /?, y,

the direction of this line evidently changes.
The secondary (electric) oscillations of Problem 1, Chapter II., are

represented by the moments

* -?
--- M * -{*- d? ^-dr'

which give X
2
:Y

2
:Z

2
= [2-3(p

2 + y
2
) ]

: 3a/? : Say,

that is, these oscillations take place along the lines determined by
this proportion.

Similarly, we find that the primary and secondary (electric) oscilla-

tions of Problems 2 and 3, Chapter II., also take place along lines

determined by similar proportions.
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We observe that the oscillations examined in the preceding

chapter all take place along straight lines; moreover, that the

directions of these lines of oscillation are functions alone of the

direction-cosines a, (3, y. In any region situated at a distance r from

the source of the disturbance, that is large in comparison to the

dimensions of that region, the directions of oscillation of the given

waves would, therefore, be approximately parallel ;
that is, at any

point at considerable distance from the source any ray or pencil of

rays could be regarded as approximately linearly polarized. We
observe, moreover, that the direction-cosines appear in the above

expressions for the determination of the directions of oscillation, not

in the first, but in the second and third powers ;
this will evidently

correspond to a more complete polarization in distant regions.

More General Problem
; Elliptically Polarized Electromagnetic

Oscillations. A most general case of an electromagnetic disturbance

in elliptic paths can be obtained, if we somewhat generalize

Problem 3 of the preceding chapter; let the auxiliary functions

Uj V, W be the same functions of the purely spherical wave-

functions
X ,

<

2,
<

3
as in Problem 3, but let the functions /p /2, /3 ,

which differed there from one another only in amplitude, differ here

also in phase ; namely let

/!
= &

x
sin Wj

=
a^ sin n

\vt (r + S
x ) ]^

/2 = a
2
sin w

2
= a

2
sin n\yt

-
(r + S

2)]
j-

(6)

/3
= a

&
sin <o

3
= a

B
sin n

[vt
-

(r + 8
S)y

We replace /1? /2 , /3 by these functions in formulae (28, II) for

U, F, W9
and we have

TT
n 1

u =
( flLycos w fto/j cos Wo ) H

-

(ciny sin w a 9p sin Wo ),

r \ 2 / B; r% \ 2 f

V n
/ 1 /V (#3acosw3 ftjycoswj^ + -g (&3a sin w

3 d-fl Sin toj),

, n, 1 .

w =
(a-,pco$,(D-. $9acosto ) + -^ (a-,p sin w, a a sin w9 ).

r ^ 2/ r2 v ll

We then replace U, F, W\>y these values in formulae (5, II), and

we find

V 2
-^x % ^

-j^

= [^(p
2 + y

2
)
sin Wj

- a
2a/3 sin w

2
-

3ay sin u>
3]

^
1X

1 cos w, + SanO-p
1

cos to + 3aQav cos w c

)] sin Wj + 3a
2a/2 sin w

2 + 3a
3ay sin
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and similar expressions for Y and Z. The different terms of these

expressions for the moments represent simple waves; these waves

evidently interfere with one another (cf. Chapter IV.), and may give
rise to phenomena of interference. But here we are considering only
the resultants of these simple waves, the compound waves themselves,

and not the phenomena due to the interference of the former.

Electric and Magnetic Moments at j_ to each other. It is easy to

show that the resultant electric moment X, F, Z of formulae (7) and

the resultant moment a, b, c of the magnetic disturbance accompanying
the given electric one always stand at right angles to each other (cf.

Ex. 13). This is the form which the law for linearly polarized oscilla-

tions (cf. p. 54) assumes for elliptically polarized ones.

The Primary Wave. We conceive the path described by any
element of any given wave-front of the disturbance represented by
formulae (7) as the resultant of the paths described by that element

due to the passage of the waves represented by the terms of the

different orders of magnitude in 1/r. We shall, first, examine the

path described by any element due to the passage of the primary

wave; but, beforehand, let us call attention to a property of the

primary wave that will be of service to us in the examination of the

path described by any element of the same.

The Vector Xv Yv Z
l

at j_ to Direction of Propagation. The

primary (electric) wave is represented by the moments

2 + y
2
)
sin Wj

- a
2af3 sin w

2
- a

3ay sin a>
3]

Y
l
=

[&2 (a
2 + y

2
)
sin a>

2
- a

s/3y sin w
3

-'
a^aft sin

n
l
=

[aB (a
2 + /3

2
) sin a>

3
- a^y sin Wj

- a
2/3y sin a>

2], (D = 1
)

>..... (8)

It is now evident from the form of these expressions that the

resultant moment Xv Yv Z
l always stands at right angles to the

direction of propagation of the wave represented by the same
;
that

is, the primary oscillations take place in planes at right angles to

their direction of propagation. For replace Xv Y
lt
Z

l by these

values in formula (23A, II) for the angle (/i*, r\ and we find

cos
(/i, r)

=
0, hence (fv r)

=
^

(cf. also Ex. 17 at end of chapter).
The Path of Oscillation. To obtain the path described by any

element of the primary wave represented by formulae (8),
we must

* This vector (moment) /j is not to be confounded with the wave-function /x

of formulae (6).

F
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eliminate the time t from those equations (8); for this purpose we

write the same in the explicit form

/a\

_ r
)
cos^ _ cos n (^

_ r
)
sin wSJ

- a
2a/3 [sin n (vt

-
r) cos n8

2
- cos ?i (^

-
r) sin w8

2]

- a
3ay [sin n (^

-
r) cos ?iS

3
- cos n (vt

-
r) sin nS

3]

with similar expressions for Y
l
and ^

15
and eliminate first the

sin n (vt-r) and then the cos?i(^-r) from any two of the same;

the elimination of the former function from the first two equations

gives

(10)

'

where A
l
= a

l (/3
2 + y

2
)
cos n8

:
a
2a/3 cos n82

a
Bay cos w83

"

B-L
=

a-^ (/3
2 + y

2
)
sin TI^

- a
2a/3 sin n8.

2
- a

3ay sin n8
3

A
2
= a

2 (a
2 + y

2
)
cos n8

2
- a

3/3y cos n83
-
a^/3 cos n8

l

B
z
= a

2 (a
2 + y

2
)
sin n8

2
- a

3fiy sin n8
3
-
a^/3 sin n8

1

and r = n(rf-r); ................................. (12)

and the elimination of cos n(vt-r) from the same two equations

(13)

We, next, eliminate the function T from equations (10) and (13) ;
for

this purpose we square the same, add, and we have

Upon evaluating the coefficients of this equation, we find

* + Bf = a*a?^ + a
2
2
(a

2 + y
2
)
2 + a

3
2
/2

2
y
2

- 2a
1
a
2a/3(a

2 + y2)cos n(S1
- 8

2 ) + 2a
1
a
3a/2

2
y cos ^(Sj

- S
3 )

- 2a
2
a
3/3y (a

2 + y
2
) cos n(82

- 8
B)

)cos n (8l
- 8

2 )
- '2a

l
a
Bay(f3

2 + y
2
)cos n(8l

- 8
3)

-.)

a2^8
2 + y

2
) cos n(8j

- 8
2) +a^y (2a

2 -
l)cos 7i(8j

- S
3 )

3ay (2/3
2 -

l)cos 7^(82
- 8

3)

and (^^2 - ^
2^)2 =

[
- a

1
a
2y

2 sin n(8^
- 8

2) + fl^a^y sin n(8^
- S

3)

.(15)



THE PRIMARY ELECTRIC WAVES. 83

Equation (14) is that of a cylindrical surface parallel to the 2-axis.

It will thus suffice to determine the curve intersected by the same

on the z?/-plane.

The Conic (14) an Ellipse. As equation (14) is of the second degree,

the corresponding curve will be a conic. To determine the particular

conic in question, we make use of the well-known properties peculiar

to the same. The general equation of a conic can be written

Ax* + 2Bxt/ + Cf + Wx + 2Ey + F=0................ (16)

Upon comparing equation (14) with this one, we observe that the

coefficients A, B, ... of the former assume here the particular form

IV

We, first, evaluate the determinates

ABD
Knl and A= BCE

DEFr

of the given conic (14) : we replace here A, B, ... by their values (17),

and we have

a = [(A* + B*Y- -(A.A.+ B&)*\J = (A,B2
-A&)*~

and & = (AC-B-2)F=aF= - (A^-A^)*^;
hence a>0 and A<0, (18)

except in the particular case where

A.B^A.B, : (19)

The conditions (18) do not suffice for the determination of the

conic in question ;
we must also know the value or sign of the quotient

3 ;
we have

A A _Ar* A
* J J <()>"A A+Bf n4

except where -^1^2
=

^2-^1-

Equation (14) is now determined uniquely as that of an ellipse by
the conditions (18) and (20).

The Particular Case A
l
B

2
=A

2
B

l ;
here the determinates a and A

vanish, and the conic in question is determined by the values of the

coefficients A and C and the determinates

B-K2I ,nd
1^1 1

* This determinate a is not to be confounded with the direction-cosine a.

t These determinates are not to be confounded with the direction -cosines /3 and 7.
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We replace here A, B, ... by their values (17) and (19), and we

have

A = (A? +Bf^ >0, C= (A* +A2
) J4 >0,

and = 7 = 0;

by which conditions equation (14), where A
l
B

2
= A

2
B

l ,
is determined

as that of a double straight line. To confirm this, replace A
l by

its value * l from formula (19) in equation (14), and we have

hence

It thus follows that the cylinder represented by equation (14)

intersects the ^y-plane in an ellipse, except, where A
l
B

2
= A

2
B

l ,
when

the given ellipse contracts to a double straight line.

To interpret the condition (19), we recall the last of formulae (15),

by which we can write the same in the form

a
t
a
2y

2 sin n(8l
- 8

2 )
- a^afy sin n (8l

- 8
3) + 2

a
3ay sin n(82

- 8
S )
= 0. (22)

This can be replaced by the two conditions

or

a^y sin n(8l
- S

2)
- a^fB sin n(81

- 8
3) + a

2
a
3
a sin n(82

<$
3 )
= 0. (22A)

The cey-plane is defined by the former, and a plane, passing through
the origin and making angles with the coordinate-axes, that are deter-

mined as functions of the quantities av a
2,
a
3
and 8

1 ,
S
2,

S
8,

which are

given, by the latter condition (cf. Ex. 12).

Path of Oscillation determined by Intersection of Elliptic Cylinders ;

Primary Wave Elliptically Polarized. Equation (14) determines the

path of any element, set in oscillation by the passage of the given

primary (electric) wave, with regard to the x and y axes
;
that is, the

path sought lies on the elliptic cylinder defined by this equation. To

determine the path described on this cylinder (14) by the given

element, we must evidently seek a second equation, in Xv j^ or Y
lt
Zv

which represents a surface, upon which the given path also lies. This

equation is derived in a similar manner to the one above (14) and is

evidently also similar to it in form. The intersection of the two

cylinders represented by these equations gives then the path (in space),

along which the given element is oscillating.
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The equation in Xv Zl
similar to (14) is evidently

Y 2r2 V 7 r2 7, 2r2W + ^s
2
)^f - 2 (A,A, + 5A) ^/- +W + B*)^f
= (A 1

B
3
-A

3
B

1)\ (23)

where A
3
= a

3 (a
2 + /3

2
)cosn83

-a
laycosnBl

-a
2f3ycosn82 \ ,~A\

B
3
= a

3 (a
2 + /?

2
)
sin n8

3
-
a^ay sin

TiSj
- a

2/3y sin
716^ /

Surfaces of the second degree intersect, in general, in a curve of

the fourth degree. We have now seen on p. 81 that the given
oscillations take place in planes that are at right angles to the

direction of propagation. The elliptic cylinders represented by

equations (14) and (23) must thus intersect in a curve that lies in a

plane. A more thorough examination of the form of these elliptic

cylinders, the relative position of their principal axes to each other

and the lengths of the same (cf. Exs. 20, 21, 23, and 24), shows that

they intersect in a curve that lies in two given planes or better in

two curves, the one lying in the one and the other in the other plane.

Since now an elliptic cylinder and a plane, for example the plane, in

which one of these curves lies, intersect in an ellipse (provided, of

course, they intersect), the given cylinders will evidently also intersect

in (two) ellipses. Of these two ellipses that one determines the path
of oscillation of the given element, which lies in the plane that is at

right angles to the direction of propagation ;
it can also be determined

as follows : the equation in Yv Z^ similar to equations (14) and (23)

represents an elliptic cylinder parallel to the x-axis, which intersects

either of the other two elliptic cylinders (14) or (23), for example
the former, in two ellipses, each lying in a plane ;

of these two ellipses

one and only one is identical to one of the above two ellipses, the

intersections of the elliptic cylinders (14) and (23), and that ellipse is

evidently the one sought or that of oscillation of the given particle or

element. The given primary electric wave is thus elliptically polarized.

The Secondary Wave ;
Determination of the Angle (/2, r). Let us,

next, determine the path described by any ether-element upon the

passage of the secondary electric wave, represented by the moments

X
2 , Yy Z^ of formulae (7). For this purpose we, first, determine the

angle (/2, r), which the vector /2
* from the position of rest of that

element to its position at any time t makes with the direction of pro-

pagation of the wave, to which that element belongs. By formula

(23A, II) the angle (/2 , r) is given by the formula

i , . X>a
cos (fv r)

=^
* This vector/, is not to be confounded with the vrave-function/ of formulae (6).
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where Z
2 ,
F

2, Z^ are to be replaced by their values

Zj =^ { [2 !
-

3aj (
2 + y

2
)]

cos
(>! + 3a

2a/3 cos w2 + 3a
3ay cos w

3 }

F
2
= \ {[2a2

- 3a
2 (a

2 + y
2
)]

cos o>
2 + 3a

3/8y cos a>
3 + Sfl^a/3 cos coj

COS w COS a>
2}

....(25)

(cf. formulae (7)). We thus find

2 (a-, a cos , 4- aM cos w2 + a
3y cos o>

3)

cos(/2 , r)
=

L + 3a2
)cos

2w
1
+ 2

2
(1 + 3/3

2
)cos'-w2 ^

/

9
~v

+ a
3
2
(l + 3y'

2
)
cos'2w

3 + 6 (a^a^ cos Wj cos w2

'

Wj cos o>
3 + a

2
a
BBy cos w

2
cos w

3 )

2 (^ a cos w
1
+ a.,j8 cos w2

+ a
sy cos w

3)
\

K 2

+ 3 (t^a cos w
x + a

2/y
cos w.2 + a

3y cos w
3 )

2
J

(26A)

The Vector X
2 ,
Y

z ,
Z

2
rotates in a Plane. At any given point

(a, ft y) cos (/2, r] is evidently a function of the time t only. Is now
this expression for cos (/2 , r) such a function of t that as t varies the

vector /2
rotates in one and the same plane, like the vector /j of any

element of the primary wave represented by formulae (8) ? If this

be the case, there must then evidently be a line n passing through
the position of rest of the given element, for which cos(/2, n) = Q for

all values of /. On the other hand, if this condition can be satisfied,

such a line n must exist and, conversely, the direction of the same

thereby be determined.

If the line n exist, then cos (/2 , 71) must vanish for all values of t.

We write cos (/2 , n) in the familiar form

cos (/2 , n) = cos (/2 , x) cos (w, x)

+ cos (/2 , y) cos
(TI, y) + cos (/2 , z) cos (n, 3),

replace the cosines (/2, a), (/2, y\ and (/2, 2) by -2, S, and ^
rsspectively, and we have ^2 ^2 ^2

COS
JT

2
cos (TI, a;) + F2

cos (TI, , z}

That this expression vanish, we must have

X
2cos(n, x) + F2 cos(7i, y) + Z2 cos(n, z)

= 0.

Replace here Z
2, Y^ Z^ by their values (25), and we find, upon
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expanding the cosco's as functions of the angle n(vt-r) and the nS's

(cf. formulae (6)),

[A i
cos n(vt -r) + 5/sin n(vt

-
r)] cos(n, x)

+ L^o'cos n (vt r) + .ZL'sin n(vt - r)\ cos(n, y}LA \ / t \ /j \
* y /

+ [^ 3
'cos n(vt

-
r) + .Bg'sin n(vt

-
r)] cos(n, z)

=
0,

where

A
i
= [2^ 3a

x (/3
2 + y

2
)]

cos wSj + 3a
2a/3 cos n82 + 3a

Bay cos nS
B

BI = [2^
- 3^ (/3

2 + y
2
)]

sin wSj + 3a
2a/3 sin %S

2 + 3&
3ay sin n8

B

A
2
=

[2a2
- 3a

2 (a
2 + y

2
)] cos n82 + 3a

B/3y cos n8B + 30,^/3 cos nS
1

(a
2 + y

2
)]

sin n8
2 + 3a

B/3y sin ?i8
3 + 3a

la/3 sin wSj

+ /?
2
)] cos 7i8

3 + S^ay cos nS
l
+ 3a

2/3y cos n82

B
B
=

[2aB
- 3a

B (a
2 + /3

2
}]

sin 7iS
3 + S^ay sin n8

1
+ 3a

2/3y sin n8
2j

or [^ I'COS(TZ/, x) + A 2'cos(n, y) + A B'cos(n, z)~\ cosn(vt
-

r)

+ [-B/cos^, ) + B2'cos(n, y) + BB'cos(n, z)~\
sin n(vt

-
r)
= 0.

That this equation hold for all values of t, the coefficients of

cosn(vt-r) and sinTi(^-r) must evidently vanish; that is, we must
have

^
1'cos(%, ) + ^ 2'cos(?i, y) +A B cos(

.(27)

, z)
= 0\

and 5/003(71, a;) + B
2'cos(n, y} + 53'cos(w, z)

=
J

"

These two equations can evidently always be satisfied, provided the

cosines (n, x), (n, y), and (n, z) be so chosen that they are determined

by the same and the analytic relation

cos2 (w, x) + cos2
(n, y) + cos2

(?2, z)
= l (29)

On the other hand, these three equations suffice for the unique
determination of the direction of the line n.

Determination of Normal to Plane of Oscillation. Upon eliminating

cos(n, x) and cos(w, y) from equations (28) and (29), we find the fol-

lowing expression for cos2
(%, z) :

and similarly

oncos
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To express these direction-cosines in terms of the given quantities

av dp a
B
and Sv S

2,
3
3
and the direction-cosines a, /3, y of the vector r,

we must, first, evaluate the three expressions

A.'B,'
- A

2'B,',
A

2'Bs
- A

B
'B

2

'

and A.'B,'
- A,'B^

by formulae (27) we find

2 - 3y
2
)
sin nSl2 + S

5
'B

2

'

2 - 3a2
)
sin ftS

23
- Sa^ay sin n8l2

&
3(2

-
3/3

2
)
sin nS13

-

sin w5

sn

where 8
12
= 8

t
- 8

2 ,
8
13
= S

T
- S

3
and <5

23
= 8

2
- 3

3

Eeplace the given expressions by these in formulae (30), and we find

COS2
(ft, X)

2 - 3a2
) sin n8 Z

- sin n8l2 + Sa^a/3 sin rtg
]3

(4
-
3y

2
)
sin2 nS

l2 + a
1

+ a
2
2a

3
2
(4
- 3a2

)
sin2 w8

- a
2ay sin ?i8

12
sin ?i8

23 + a
3a^8 sin w8

13
sin ^8

3 (2
- 3a2

)
sin n8

28
- 3fl

1
a
2ay sin

sin w8

-
3(al

a
2y sin wS12

- a^/3 sin n8
lB + a

2
a
s
a sin

cos2
(ft,

y sin n8
12
- a

}
a
3/?

sin w8
1

COS2
(%, )

2 - 3y
2
)
sin ^aJ3y sin r?8

ls
- 3a

2
a
?,ay sin nS

- 3
(ffljftgy

sin w8
12
-
a^a a sin w5

. ...(32)

It thus follows that there is a fixed line w, passing through the

position of rest of the given oscillating element, and with which the

vector /2 always makes a right angle ;
the direction-cosines of that line

are given by formulae (32). The given secondary (electric) oscillations,

like the primary ones, which they are accompanying, thus take place

in planes (cf. also Ex. 16 at end of chapter) ;
these planes of oscillation

do not, however, in general, stand at right angles to the direction of

propagation of the waves, as was the case with the primary oscillations,

but they make angles with the same, which vary from point to point
and for different values of the quantities a

1?
a
2,

a-
3
and

Sj,
8
2,

8
3

. For
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another proof of the above, namely that the given oscillations take

place in planes, see Ex. 16 at end of chapter, where the equation of

those planes is determined.

Regions in which the Secondary Oscillations take place at _L to

Direction of Propagation. We have just seen that the secondary
electric oscillations take place in planes that do not, in general, stand

at right angles to the direction of propagation. Are there now
vectors a, /3, y, along which the secondary wave is propagated in planes,

that stand at right angles to its direction of propagation 1 and, if there

be such vectors, let us determine the same. That the given oscillations

take place in planes that stand at right angles to the direction of

propagation, cos(/2 , r) must vanish for all values of t; that is, the

following relation must evidently hold between the direction-cosines

sought and the given quantities a
l9
a
2,
a
B
and Sp S

2,
8
3
for all values of t :

a
x
a cos Wj + a

2/3 cos a>
2 + a

3y cos w
3
=

(cf. formula 26)), or explicitly

ttjafcos n (vt r) cos n8
l + sin n(vt

-
r) sin n8

1]

+ a
2/3[cos n (vt

-
r) cos n8

2 + sin n(vt
-

r) sin 9i8
2]

+ a
3 y [cos n (vt

-
r) cos n83 + sin n (vt

-
r) sin n8

3]
= 0.

That this equation hold for all values of t, the coefficients of

cosn(vt-r) and siun(vt-r) must evidently vanish; that is, the two

equations ^a cos^ + aj$ cog^ + a^ cos^ =

and
1
a sin n8

:
+ a

2/2
sin n8

2 + a
3y sin n8

3
=

must be satisfied, and also the analytic condition between the direc-

tion-cosines a2
_j_ ft>2 _|_ y2

_ I

We have here three equations for the determination of the three

quantities (a, /?, y) sought; the former can, therefore, be satisfied,

provided the latter be determined thereby. The first two equations
lve

a^fi sin nS
12
= - a

zy sin n8
l3 ,

the last two

sin nS
2 + a

sy sin 7i6
3)

2 + a*(P* + y
2
) sin^Sj

= a* sin2 n8v

and the elimination of /3 from these the following value for y :

y= a^2
sin n8^ sin ??8

12J
F~ 1

and hence (3
= a^ sin n8

l
sin n8

ls
F~ l

and a = + a
2
a
B
sin ?^S

1
sin n8

2B
F~ l

where F2 = a
2
2
(a^ sin*nS

l
+ a

3
2 sin2w8

3)
sin2w3

12

+ 3
2
(a1

2 sin2^^! + a
2
2sin2/iS

2)
sin%813

- 2a
2
2

3
2sin n8

2
sin n8

3
sin n8

l2
sin n8

l

.(33)
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Path of Oscillation. To obtain the path described by any element

of the given secondary (electric) wave in its plane of oscillation, which,

as we have seen above, is thereby determined that its normal (n) is

given by formulae (32), we must eliminate the time t from formulae (25),

by which that wave is represented. For this purpose we write these

formulae explicitly, expanding the cos CD'S as functions of the angle

n(vt-r) and the w8's, as on p. 87, and we have

^_2

;

n
A-,' cos T + B' sin r

= AJ cos r + sn T

A t= A~ cos T + Be, sin T

.(34:)

where B^, ... are given by formulae (27) and

T = n (vt r).

The first two equations (34) give

cos T

and

and these, squared and added, the following quadratic equation

(35)

Upon evaluating the coefficients of this equation, we find

A
2
'* + B

2
'* = a

2*[2-3(a* + f
+ 6$

2
$
3 [2 3 (a

x [2
- 3 (a

2 + 7
2
) ]

cos n8
12 + 1 Sa

}
a
Ba^y cos n8

lB

i
A

% + B^B} =
Sa^a/3 [2

-
3(/?

2 + y
2
)] + 3a

2
2
a/3 [2

- 3 (a
2 + 7

2
)]

- 6a2
)
cos 7i8

13

-
6/3

2
)
cos nS

2B

and A^ +B^ = a^[2-3 ((3
2 + 7

2
) ]

2 + 9a
2
2a2/?

2 + 9a
3
2a2

7
2

^0)8 [2
-

3(/2
2 + 7

2
)] cos n8u

2 - 3(/?
2 + v2

)lcos7i810

i'B2
' -

^z'Bi is given by formulae (31).

.(36)
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Equation (35) evidently represents a cylindrical surface parallel to

the 2-axis. It is the same equation as that (14) examined on pp.

83, 84, differing only in the values of its coefficients. The cylindrical

surface represented by this equation is thus elliptical, except where

Am-AjBf-ft
(cf. p. 83) or upon the surface

a
x
a
2 (2

- 3y
2
)
sin wS]2 + Sa^Py sin ?i8

13
- 3a

2
a
Bay sin %8

93
=

(37)

(cf. formulae (31)); in which particular case the elliptical cylinder

contracts to a double plane ;
that is, the ellipse, intersected on the

/-plane, contracts to a double straight line upon the surface (37).

Path of Oscillation determined by Intersection of Elliptic Cylinders ;

Secondary Wave Elliptically Polarized. Equation (35) determines the

path of the given oscillating element with regard to the x- and /-axes

only. As on pp. 84, 85, we must also seek the equations in X
2 ,
Z

2
or

Y
2,
Z

2 representing surfaces, upon which the given element also lies.

The intersection of these surfaces will then determine the path

described. The equations in X
2,
Z

2,
and Y

2 ,
Z

2
are obtained in a

similar manner to the one above (35) in X
2 ,
Y

2
and are evidently also

similar to the same in form, representing elliptic cylinders parallel

to the y- and -axes respectively.

Since now equation (35) and the two analogous ones in X
2,
Z

2
and

F
2,
Z

2 are the same equations as those (14), (23), etc., already ex-

amined, differing only in the values of their coefficients, the results

deduced on p. 85 for the latter will also hold here : namely, since

the secondary oscillations X
2,
F

2,
Z

2
take place in planes, as we have

seen above, the elliptic cylinders (35), etc., will intersect in curves

that lie in planes, that is, in ellipses, and the oscillations them-

selves will thus take place in elliptic paths. The primary and

secondary waves, represented by the moments Xv Yv Z^ of formulae

(8) and X
2 ,
Y

2 ,
Z

2
of formulae (25) respectively, and belonging to

any given pencil, will thus be elliptically polarized ;
the only material

difference between the paths of these two waves is that the planes

of oscillation of the former are always at right angles to the direction

of propagation, whereas those of the latter make variable angles with

the same.

Confirmation that the Elliptic Cylinders intersect in Plane Closed

Curves. The conclusions drawn on p. 85 and applied above to the

secondary oscillations also, namely that the elliptic cylinders (14)

and (23) and (35) and the analogous one in X
2,
Z

2
intersect in plane

ellipses, were founded on the fact that by the formula on p. 81 for

c s (/i, r) and formula (26) for cos (/2, r) the vectors /j and /2
of any
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oscillating element always made right angles either with the direction

of propagation of the wave or with some fixed line n in space (cf. also

Ex. 16 at end of chapter). That now the two elliptic cylinders (14)

and (23) or (35) and the analogous one in X
2 ,
Z

2
or Y

2,
Z

2
intersect

in two plane dosed curves only dosed curves would come into con-

sideration as paths of oscillation the cylinders themselves must

evidently be of such dimensions that their breadths with regard to

that coordinate axis, which stands at right angles to the plane passing

through the two infinitely long axes of the given cylinders, be the

FIG. 9.

same
;

for example, the breadth of the cylinder (35) with regard to

the ;c-axis, which breadth we denote, as indicated in the annexed figure,

by the distance x" - x
s

'

t
must be the same as that of the analogous

cylinder in X
2
Z

2
with regard to the same axis (), denoted by the

distance x
y

" - x
y',

as in figure. Let us now confirm this proposition for

the two cylinders X2
Y

2
and X

2
Z

2, whose intersection determines the

path of the oscillating element of the given secondary wave at any
point a, p, 7, the origin of our coordinates X>, Y2,

Z
2,
X

2
=Y

2
=Z

2
=

being the position of rest of that element. For the proof of this pro-

position for the cylinders (14) and (23), whose intersection determines

the path of any oscillating element of the primary wave, see Ex. 29.
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To determine the points x
t

'

and x", where the tangents to the

ellipse (35) that are parallel to the y-axis intersect the se-axis (cf. the

above figure), we first seek those values of Y2 of the given equation

(35), for which X2
is a maximum and minimum. For this purpose

we first express X2
as function of Y

2
: we write the given equation

aX
2
*+ bX2

Y
2 + cY2

2 + d = 0, (38)

putting

and we have

The equation

+ %,')

bY
^(b* ~ aC

)
Y

2*
~ *ad =f(Y2)-

.(39)

.(40)

.(41)

determines now, as we know, those values of Y
2
of the curve (38), for

which X2
becomes a maximum and minimum.

By formula (40) this equation (41) can be written

d

which gives the following equation for the determination of Y
2

:

(b-

hence

that is, the two values

and Y''= -
.(42)

which of these values is that, for which X
2
becomes a maximum or

minimum, is evidently immaterial.

We then determine those values of Xv to which these values (42)

of Y
2 belong, upon replacing Y2 by those values (42) in equation (38)

or better (40) ;
we evidently have

.(43)

that is, two values for X and two for X
2

. Of the two values for
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X
2 the one is evidently the minimum (cf. figure 9) sought, whereas

the other is that other or smaller value of JT
2',

which belongs to

the same value Y
2

'

of Y
2
and together with the latter determines that

point of the given ellipse, which we have marked in the above figure

with a cross
(
x

).
To determine which of these two values for X

2

'

is the value (minimum) sought, we must evidently compare the same

with regard to their absolute values and choose the larger of the

two.

We have

and

Y '

2
...(44)

Let us now assume that the former of these expressions be the

larger (in absolute value) of the two. The following inequality must
then hold :

we take the squares of the given expressions, since we are

comparing their absolute values hence

a2c

or

or

Replace here a, b, c by their values (39), and we have

or > - 16 (AJAj +BJBtf(A^ - A^B^
which is evidently always the case.

The above assumption, namely that the minimum value of X2

'

be

given by the former of the above expressions (44), namely

is thus correct.

,(45)
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Similarly, we can show that the maximum value of X
2

"
is given by

the expression

d~ 1 l(b*-4ac)d" ~ ~
The breadth of the cylinder X2

Y
2
with regard to the o-axis is now

evidently determined by the absolute value of the difference between

the maximum and minimum values of X
2 ,

which are given by these

formulae (45) and (46) ;
we thus have

(47)

where the vertical lines denote that the absolute value of the given

expression is to be taken.

Similarly, we evidently find the following analogous expression for

the breadth of the cylinder X2
Z

2
with regard to the z-axis :

where a' = (Af + B*j v 6' - - 2 (A,'A,' + ,',')

r*
c' = (A* + B d'=- (AW - A.'B.r

Replace abed and a'b'c'd' by their values (39) and (49) in formulae

(47) and (48), and we find

-^jAf + B*, (50)

and similarly

(51)

that is, one and the same expression for the breadths of the given

cylinders with regard to the ic-axis.

The proposition stated on p. 92 is thus confirmed, and hence the

conclusions drawn therefrom, which were founded on the same.

For a further examination of the ellipses (14), (23), (35), etc., the

determination of the angles, which their principal axes make with the
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coordinate-axes, and of the lengths of those (major and minor) axes,

see Exs. 20-21 and 23-25 at end of chapter.

The Magnetic Waves Elliptically Polarized in Planes at _L to

Direction of Propagation. The paths of oscillation of the magnetic

(primary and secondary) oscillations are likewise determined by the inter-

sections of elliptic cylinders (cf. Exs. 10 and 11 at end of chapter). It is

easy to show that these cylinders intersect in plane ellipses, and that the

planes of oscillation of both the, primary and the secondary oscillations

stand at right angles to the direction of propagation. In this respect

the secondary electric and the secondary magnetic oscillations differ

from each other, the former taking place in planes that make variable

angles, not always 90, with the direction of propagation, whereas the

planes of oscillation of the latter always stand at right angles to the

same. On the other hand, the vector X
2 ,
Y

2,
Z

2 always stands at

right angles to both magnetic vectors, av bv ^ and a
2,

6
2 ,

c
2 ,
whereas

the vector Xv Yv Z
l
stands at right angles to the former magnetic

vector (dp 6j,
c
x )

but not to the latter (cf. Ex. 14 at end of chapter).

EXAMPLES.

1. Show, when the rectangular oscillations (2) differ in phase by ,
that the

principal axes of the ellipse described by any element under the simultaneous

action of those oscillations coincide with their directions of oscillation.

2. Show that sin n(d1
- S2 ) and cosw(51

-52 ) of formulae (3) can be interpreted

geometrically as follows :

where E and F denote the points of contact of the tangents to the given ellipse

y

FIG. 10.

parallel to the y- and #-axes respectively, P the point of intersection of those

tangents, A and B the points, in which the same intersect the x- and y-axes
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respectively, and C and D the points of intersection of the given ellipse and the
x- and y-axes respectively, as indicated in the annexed figure.

3. Show that the directions of the principal axes of the ellipse described by the

elliptic oscillation x= a sin^ y= b sin (ut + 5)

2ab
are given by tan 20 = 2

cos 5,*

where denotes the angle these axes make with the x-, y-axes.

4. The velocity of oscillation of a circular oscillation is uniform.

Take the circular oscillation

x asinn[vt-

y= a cos n[yt - (z

and we have vel. of osc. = A / 1 1 + (
^

which is constant with regard to t.

5. The circular oscillation is the only one, whose velocity of oscillation is

uniform.

The velocity of oscillation V of the elliptic oscillation

x= al sin n [vt
-

(z + 5] ) ]
= ax sin w1?

y= a2 cos n [vt
-

(z + 52 ) ]
= a2 cos a>2

is F=7iVN/

That this velocity remain uniform, we must evidently have

dV_ 2 gft^cos Wjsin aj1 -a2
2 sinw2 cos a>2_

vaj cos Wj + a2
2 sin2 a>2

hence a-f sin 2^ - a2
2 sin 2a>2

= 0,

or explicitly

[e^
2 cos 271?!

- a2
2 cos 2/i52] sin 2n (vt

-
z)
-
[a^ sin 2^5!

- a2
2 sin 2w52] cos 2n(vt -z) = 0.

That this equation hold for all values of t, its coefficients must evidently vanish,

that is, the relations must hold

a-f cos Snd-t
- a2

2 cos 2w52
= 0,

and a
x
2 sin 2?^ -

2
2 sin 2?i52= 0.

Show that these relations between the a's and 5's can be satisfied only when

a
l
=

2 and n (dl
- 52 )

=
^,

that is, when the given oscillation is circular.

6. For a
l
= az

= as
= 1 the coefficients in formulae (14) and (23) assume the follow-

ing form throughout the xy-plane :

A !
2 + Bi*= pP- 2a/3

3 cos rc$12,

^4 2
2 + B*= a? - 2a3

]8 cos w512 ,

A^ 2 + B^BZ
= -

a/3 + 2a2
/3
2 cos w512,

A^3 + B^BZ- /3
2 cos ndl3

-
a/3 cos nd (813

- 512),

t
= -

pp sin n513+ aft sin n(dls
- 512),

512=51 -52 and 513= 51
-53 .

Cf. Preston's Theory of Light (second edition), Ex. 5, p. 56.

G
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The given formulae thus assume here the form

a'(l -2a/3cosw512 ) + 2a/3(l -2a/3cosw512)^|^ + 2
(l
-
2a/3 cos 7i512 )

a double plane passing through the origin and the s-axis observe that the

angles this plane makes with the x- and y-axes are functions of a and /3 only and

not of the 5's and

cos w513
- a cos n (513

- 512)

(&)

+ j3
2
(l
-
2a/3 cos ?i512 ) -^j- =/3

2
[/3 sin w513

- a sin?i(513
- 512 ) ]

2

Confirm that this equation is that of an elliptic cylinder parallel to the y-axis

or an ellipse in the rra-plane (cf. p. 85). The familiar conditions

a>0, A^O, and ^<0 (cf. p. 83)

must then hold. We have here

* a=AG- E?=
r-
4 /3

2
[1

-
2a/3 cos w512

-
/3
2 cos2 ndls

a2 cos2 n (513
- 512) + 2a/3 cos w513cos n (513

- 512) ],

or, since here a2 + /3
2 =l,

a =^ /3
2
{a

2 sin2 n (513
- 512) + /3

2 sin2 ndis

+ 2af3 [cos ?z513 (cos n5ri cos ?i512 + sin n813 sin ?i512)
- cos n512] }

=^ /3
2
[a

2 sin2 w(813
- 512) + /3

2 sin2 n513
-

2a/3 sin 7i513 sin ?i(513
- 512 ) ]

r 2

= T fl" [a sin ?i ( 5j3 5i 9) ]3
sin w5j3J "I>0 ; (c)

w

moreover, since A aF (cf. p. 83)

and here F= -
/3
2
[/3 sin ndis

- a sin n(8l3
- 512)]

2
,

by formula (c)

A = - -
4 j3

4
[a sin n(S13

- 512 )
-

)3 sin w513]
2
[/3 sin 7i513

- a sin w(813
- 512)]

2< ;

and lastly, since A = l,

^-
= A<0. Q.E.D.

Equations (a) and (b) thus intersect in an ellipse, that is, the given oscillations

are elliptic throughout the #y-plane (cf. p. 85).

7. Show that the vectors (in the xy-plane), along which the oscillations of

Ex. 6 become linear, are

a2= l, /3
2= 0, (7-0)

and

, (7-0).
I

* This determinate a is not to be confounded with the direction cosine a.
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8. For al
= a^= a3

= a the coefficients (36) in equation (35) assume the following
form in the #y-plane :

A 2

'2 + B.^= 4 - 3a2 + 6a (2
- 3a2

) cos n 12 ,

A^AJ + B^'B.J = 3ap - 2(1
- 9a2/3

2
) cos 312 ,

A !
/2 + /

2= 4 - 3/3
2 + 6a/3 (2

-
3/S

2
)
cos n 12 ,

^4 j'^'
-
^a'/?/= 2 sin ?i512,

where 512= 81 -52 .

Confirm that the given equation (35) in J 2r2 is that of an ellipse, showing that

AC- B2= [4
- 3a2 + 6a/3(2

- 3a2
)
cos n512] [(4

-
3/3

2
) + 6a/3(2

-
SfP) cos nS12]

-
[3aj8

-
2(1 - 9a2

/3
2

)
cos ?i512]

2

= 4sin'2 512 >0, etc.

The coefficients in the equation in X2 and Z2 similar to (35) assume here the

form ^ 3
'2 + ,B3

/2
:=l, ^ 1

/2 +^1

'2 same as above,

ASAJ + B^BJ= -
(2
- 3 2

)
cos nSJ3

- 3a/3 cos w(812
- 813 ),

A^Bs' - AJBS= (2
-

3/S
2
)
sin 813

- 3aj3 sin n(6lz
-

13 ),

where 512 = 5
X
- 52 and 813

= d1
- S3 .

To confirm that the equation in X2 ,
Z2 is here that of an ellipse, we first

replace the ^4"s, B"s, C"'s by these values in the determinate a, and we have

AG - B2= 4 - 3/3
2 + 6a/3 (2

-
3/3

2
) cos ndr2

-
[(2

-
3/3

2
)

2 cos2 d13 + 9a2^
2cos2?t (812

- S13 ) + 6oj8(2
-

which we can write

= 4 _ 3/3
2 -

(2
-

3/3
2

)

2
(l
- sin-7i513 )

-
9/3

2
(l

-
/3
2

) [1
- sin27i(512

- S13 )]

+ 6aj3(2
-

3^3
2

) [cos ?i512
- cos ?i513 (cos w512cos nSl

-
J
82)sin

2
7i(512

- 513 )

2 sin
2
?i513

- sin n512 sin i513 cos w513 )

- (2
-

3/3
2
)

2
siii

2 513

= [(2
-

3/3
2
)
sin w513

-
3a/3 sin n (

812
- 513 )]

2> 0, etc.

We observe that the equation (35) in X2 ,
Y.2 contains here 512 only ; for 512= it

evidently reduces to that of a plane. It is thus evident that the path of oscilla-

tion of the given secondary wave (al
= a

s>
= a3

= d) will be that of an ellipse

throughout the xy-plane, when 8^= 8^
- 52

= 0.

In the cey-plane the equation in X^ Z.2 reduces to that of a plane, when

(2-3/3
2
)sin7i513 = 3a/3sin?i(512 -513 ) ............................. (a)

Along the vectors a and
|8 determined by this equation the given elliptic cylinder

will thus contract to a plane, and hence the given secondary oscillations take

place in ellipses.

Lastly, show, when the relation (a) holds and 512= 0, that the given secondary
oscillations become linear along the four vectors,

(7=0);

= -0-872,

and 003
= 0-872, = -0-4898, (7= 0).
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9. Show that along those vectors, for which the secondary oscillations of Ex. 8

become linear, the same do not take place at right angles to their direction of

propagation.

10. Show that the moments a
1?

b
lf

c of the primary magnetic oscillations that

accompany the electric oscillations represented by formulae (7) are determined

by the formulae

/ =A l sin T - Bl cos r \

bi
=A 2 sin T

- B% COST V, .................................. (a)

Cj'
=A 3 sin T - B3 cos T]

. v r , . v r ,
,

v r
where a-, =--^oh, o, --

^b-,, c,^
---

9 Ci,
v n2 l v n* 1 v n2 1

A l
= a.2y cos nd.2

- a3(3 cos nd3 ,
Bl
= a.2y sin nd2

- as/3 sin n53 ,

A = a3a cos nd3
-

a-^y cos ndlt
B.2 = a3a sin nd3

-
0^7 sin 7id

l9

A 3
=

ctj/3 cos nd-L
- a2a cos nS.2 ,

B3
= a^ sin nd

1
o.2a sin 7z52 ,

and T = n(vt-r);

moreover, that these oscillations take place in elliptic paths, which lie in planes
that are at right angles to the direction of propagation and are determined by
the intersection of the elliptic cylinders

and (

or (A 3
* + B?} V2 - 2 (A 2A 3 +B2B3 ) 6/c/ + (A*

and, lastly, that these cylinders contract to double planes along the planes

y= Q, /3
= and a = respectively , ......................... (c)

and all three (cylinders) along the plane

aja.2y sin n(d1
- 52 )

-
a-^a^ sin n(5j

- 53 ) + a2a3a sin n(S2
- 53 )

= ........... (d)

(cf. also p. 84), throughout which (d) the given oscillations thus become linear.

11. Show that the moments 2 > &a> ca ^ *ne secondary magnetic oscillations that

accompany the electric oscillations represented by formulae (7) are determined by
the formulae

a2
' =A i sin r - B cos T~\

b2
'= A% sin T - B2

'

cos r >, ................................. (a)

c% =A S

'

sin r - .63' cos TJ

v r*2 v r2 , v r*
where a2

= ----- a.2 , 69'= --- 69 , c9 = --- c.,,
v n 2 v n 2 VQ n

2

BI a$y cos n$2
~

A 2
' = a3a sin nd3

- a
:y sin nd^, B2

'= a3a cos nd3
-

A 3 a^ sin nd^ a2a sin n52 ,
B3

=
a^fS cos nd^^ a 2a cos ndz ,

and T= n(vt-r);

moreover, that these oscillations, like the primary magnetic, also take place in

ellipses, which lie in planes that make right angles with the direction of propaga-
tion and are determined by the intersection of the elliptic cylinders

and

(A 3
'2+Bs'*)a.2

'2 -2(A l

fA 3
' + 1

'B3')a2'c2
' + (Ai

2 + Bl

'2
)c2

'*= (A l
'B3 -ASBiV

or

(A.^ + B3
'z

) b2
'2 -2(A 2'A 3

' +B2'B3') &2'c?
' + (^ 2

/2 +
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and, lastly, that these cylinders contract to double planes throughout the same

planes (c) and (d), Ex. 10, as the elliptic cylinders (b), Ex. 10, for the primary

magnetic oscillations.

12. Show that the plane determined by formula (22A) or formula (d), Ex. 10,

passes through the origin and that the direction-cosines of its normal are

cos
( n, o:)

= a2a3 sin?i(52 -53),

cos (ft, y)= -a1a3 sinn(dl
-83 ),

cos (ft, z) =a1a2 sinw(51 -52 ).

13. Show that the total resultant electric moment X, Y, Z of formulae (7) and

the total resultant magnetic moment a, b, c of the magnetic wave that accom-

panies the given electric wave always stand their respective vectors at right

angles to each other.

14. Show, for the general problem treated in the text, that the resultant

electric moment X2 ,
F2 ,

Z.2 ,
formulae (25), always stands at right angles to the

resultant (magnetic) moments a
l5

615 c:
and a

2 ,
62 , c2 of the magnetic wave that is

accompanying the given electric wave, formulae (7) ; moreover, that the resultant

electric moment X-, F15 Z^ formulae (8), and the resultant magnetic moment

a-!, bly cx also always stand at right angles to each other ; and, lastly, that the

resultant electric and magnetic moments X
lt
F

1? Zl
and a2 ,

o.2 ,
c2 make right

angles with each other only throughout the plane

a
1
a27 sin ft512

-
c^Og/S sin ndl3 + a2a3a sin n (813

- 512 )
= 0.

15. Show that the magnetic wave that accompanies the electric wave repre-

sented by formulae (7) can vanish only when d
l
= dz= d3 and then only along the

vectors a : ^ :y a
l :a^:a3 (cf. also p. 51).

16. The following linear equation holds between the component-moments X2,

Y.2 , Z<i of formulae (25) :

We write formulae (25) in the form (34), namely

Xor* Y.2r* Zor*_ A a -r j_ R
'SUIT,

^ = A.2 COST + 5.2 sinr, -2:

multiply the first of these equations by A 2
f

,
the second by - A^, add, and we

have r2

(Az'X_
- A{ ra )

- =(AB{ -
A^B.,') sin T,

r2
and similarly, (A s

'

Y.2
-
A.JZ.^ = (A S'B.2

' - A.2'B3 )
sin r ;

and these equations, the first multiplied by (A 3 B.2
' -A 2'B3') and the second by

- (AJBi -
A-^B^) and added, give

(A 3'B.,'
- A.2'B3')(A.2'X2 -AJ Y.2 )

r~ - (AJBJ - A l'B.2')(A 3
' 72

- A.2'Z2 ) =0

or A 2'(A 3'B.2
' - A.SB^X^ + ASUSB,' - A&') Y.^A.^A^B^-A^B^Z^O;

Q.E.D.

that is, the path described by any particle JC2,
Y2 ,

Z2 lies in a plane, that deter-

mined by this equation.

17. Show that the following linear equation holds between the component-
moments Xlt Yly Zl of formulae (8) :

that is, the primary (electric) oscillations (8) take place in planes.
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18. Show, when d
1
= d.2

= S3 ^Q, that the secondary electric oscillations repre-

sented by formulae (25) take place in planes that are at right angles to the

respective directions of propagation throughout the plane

a^x + a^y + asz
= 0.

19. The secondary electric oscillations represented by formulae (25) become

(elliptically) longitudinal, that is, they take place in planes, whose normals make

right angles with the respective directions of propagation, throughout the plane

a-^a-2 sin n8l2y - a^d sin w513/3 + a.2as sin nd.^a = 0.

That the normal n to any plane of oscillation make a right angle with the

direction of propagation, the analytic relation must hold

cos(r, ?i)
= cos(r, #)cos(w, x) + cos(r, y)cos(n, y) + cos(r, z)cos(?i, z)

=

a cos (n, x) + ficos(7i, y) + -ycos(n, z) = 0.

Replace here cos (n, x), cos (n, y) and cos (n, z) by their values from formulae

(32), and we have

a2a3a(2
- 3a2

)
sin nd2i

-
3'^a.^y sin ndl2 + Sa^a2

^ sin ??513

-
c^ag/3 (2

-
3/3

2
) sin ?i513

- 3a.1a2afi'
2' sin nd^ - 3a l

a.2fi
2
y sin ndl2

+ a^a2y (2
- 37

2
)
sin ndl2 + Sa^py2 sin nd13

- 3a.2a3ay
2 sin w5.,3

=

or - a^2y sin ndl2+ a^fi sin ndl3
- a2a3a sin ?i5.23

(cf. also formula (22A) and Exs. 10 and 11).

20. Equation (14) is that of an ellipse, whose principal axes make the angle

1 2(A,A + B,B.=- Cretan -L

with the coordinate-axes X
l
and Yv

We write equation (14)

putting a= (A c? + B.?)
r

, b= - (

2(A lA 2 +BlBo) -
"

n4
TI

c= (A-^ + B^)
r
^, d=-(A l

B.2 -A.2B1 )*

To transform this equation to its principal axes, which we shall denote by u
and v, we make use of the following familiar relations between the given (X1 YJ
and the new coordinates uv :

Xl
= u cos w - v sin w^l

F! = u sin w + v cos u>/
'

where w, which denotes the angle between the two systems of rectangular co-

ordinates, shall be determined thereby, that the term uv of the equation of the

ellipse in u and v sought vanish, that is, that u and v be the principal axes.

Replace Xj and Yl by their values (c) in n and v in equation (a), and we have

a(u cos w - v sin u)* + b(u cos w - v sin w) (w sin w+ v cos w) + c (M sin w + v cos w)
2 + d=

or

(a cos
2w+ b sin w cos w + c sin2w) w

2 -
[2 (a

-
c) sin a? cos w - 6 (cos

2w - sin2w) ] uv~\ .-,,

'

+ (a sin2w - b sin w cos w + c cos2
w) v

2 + d= J
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That the term in uv vanish, its coefficient must vanish ; we thus have the

following equation for the determination of w :

2 (a-c) sin w cos w - 6 (cos
2w - sin2o>) = (e)

or (a-c)sin2w-&cos2w= 0,

hence tan2w
a-c

or, by formulae (6),
J. (/)

21. Determine the lengths of the principal axes of the ellipse represented by
formula (14).

The equation of the given ellipse referred to its principal axes, u and v,
is evidently

(a cos2w + b sin w cos w + c sin2w) u" + (a sin2w - 6 sin w cos a; + c cos2w) v
2+ d=

(cf. formula (d), Ex. 20), where w is to be replaced by its value (/), Ex. 20.

Equation (e) or (/), Ex. 20, evidently gives

1 1 a-c

and

by which the equation in uv can be written

11 a-c

,-d
=1.

a+ c 1 ,
_ a + c 1

a-c)2

The lengths of the principal axes of this ellipse are thus given by the ex-

pression

2

or, by formulae (b), Ex. 20,

where the plus sign is to be taken for the minor axis and the minus sign for the

major.

22. Show that equation (3),

2̂
- 2 cos TO (d1

- 8.2 )
^- = sin2w (61

- 52),

is that of an ellipse, whose principal axes make the angle

2a
1a<,cos?i(51

-52)
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with the coordinate-axes x, y, and the lengths of whose major and minor axes

are given by the expression

2v/2a
]
a2 sin n (dl

- 52)

2
2

)

2 -

where the plus sign is to be taken for the minor and the minus sign for the major

axis.

23. Show that the angle w, which the principal axes of the ellipse (23) make

with the coordinate-axes Xlt Z^ is given by

24. Show that the lengths of the major and minor axes of the ellipse (23) are

given by the expression

where the plus sign is to be taken for the minor and the minus sign for the major
axis.

25. Show that the angle, which the principal axes of the ellipse (35) make with

the coordinate-axes X2 ,
F2 , is given by a similar expression to that (/), Ex. 20,

for the angle, which the principal axes of the ellipse (14) make with the co-

ordinate-axes Xlt F! (X%, Y2 ).

26. Show that the lengths of the major and minor axes of the ellipse (35) are

given by the expression

A^+B^ v4 (A^A^ +B^B
where the plus sign is to be taken for the minor and the minus sign for the

major axis.

27. Determine the angle, which the major and minor axes of the elliptic

cylinders (b) of Ex. 10, whose intersections determine the path of oscillation of

the primary magnetic wave that accompanies the electric wave represented by
formulae (7), make with the coordinate-axes, and also the lengths of those axes.

28. Determine the angle, which the major and minor axes of the elliptic

cylinders (6), Ex. 11, make with the coordinate-axes, and also the lengths of those

axes.

29. Show that the breadths of the cylinders (14) and (23) with regard to the

ce-axis are given by one and the same expression



CHAPTER IV.

INTERFERENCE; INTERFERENCE PHENOMENA OF THE
PRIMARY AND SECONDARY (ELECTROMAGNETIC)
WAVES.

Doctrine of Interference The doctrine of interference is only

another form or consequence of the principle of superposition, a

superposition not of the intensities but of the displacements (ampli-

tudes) of the given single oscillations. The phenomena of interference

embrace those cases, where the resultant intensity of two or more

oscillations is not the sum of the single intensities,* which is the case

when the given oscillations are taking place at right angles to each

other (cf. Chapter III.), and include the particular case, where the

resultant intensity entirely vanishes. The doctrine of interference

does not require us to make any new hypotheses, it is a direct

consequence of the undulatory theory of light and can readily be

deduced from the properties peculiar to the same : For take two

systems of waves, represented by the moments X', Y', Z' and X", Y", Z",

and both particular integrals of our fundamental differential equations

of wave-motion (cf. formulae (16, I)); since now these equations are

linear and homogeneous, it follows that the system of waves repre-

sented by the sums of their respective component-moments,

X=X' + X" Y=Y' + Y" Z= Z+Z",
will also be particular integrals of these equations. The system of

waves represented by the moments X, Y, Z is now the sum of the

two given single systems, X', Y, Z and X", Y", Z", that is, the

resultant component-moments of the given single waves are found

by the superposition of their respective component-moments or

*
Strictly speaking, we must exclude here the particular case, where the given

oscillations differ in phase by quarter of a wave-length (cf. p. 107 and Ex. 4).
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displacements. The doctrine of interference thus teaches that the

intensity of two or more oscillations is not given by the sum of the

intensities of the given single oscillations, but that it is the intensity

of the (resultant) oscillation represented by the sums of the respective

component moments of the given single oscillations
;

for the actual

determination of this resultant intensity see below.

Interference of Plane-Waves. Let us first examine the interference

of two similarly linearly polarized plane-waves of the same period of

oscillation or wave-length (colour) A but of different amplitude and

phase, for example the two waves

y'
= a

2'smn(vt-x') } ,^
y"
= a

2

"
sin n (vt

-
x") J

where n = -r-
(cf. formulae (31, n.)) and x' and x" denote given distances

A

on the .r-axis.

The resultant displacement y at any time t is now according to the

principle of superposition

y = y' + y"
= a

2
sin n (vt

-
x') + a

2

"
sin n (vt

-
x")

= a sin n (vt
-

x),

where a and x are to be determined as functions of a
2 ,

a
2", x', x" and n.

To find these quantities, we write this equation between the same

and the five given quantities explicitly, as follows :

(a2 cos nx' + a
2

"
cos nx") sin nvt - (a.2

f

sin nx' + a
2

"
sin nx") cos nvt

= a sin nvt cos nx-a cos nvt sin nx
;

from which evidently follow, since this equation must hold for all

values of t,

a cos nx = a
2
cos nx' + a

2

"
cos nx",

anc1 tMse equations give

a'* = a
2

2 + a
2

2 + 2a
2
a
2

"
cos n (x' -x"), (2)

,' sin nx' +
"
sin nx" , xand tan?? =^ ;

=
7f (o)

2
cos nx + a cos nx

The resultant amplitude a is thus a function of the two given

amplitudes, a
2 and a

2",
and the quantity n (x' x") ;

the latter is known
as the difference in phase of the two oscillations. The resultant phase
is a function of the amplitudes and phases of the given oscillations.

For a geometrical interpretation of these formulae see Ex. 1 at end

of chapter.
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When x' -xf/ =
0, X, 2 A, ..., that is, when the given oscillations have

the same phase (or differ in phase by whole wave-lengths), then

that is, the resultant amplitude (intensity) becomes a maximum.
When the given oscillations differ in phase by half a wave-length,

that is, when
,

X 3X 5X

then a? = (a2'-a2")t,

and the resultant amplitude (intensity) becomes a minimum. For

a
2
= a

2",
a then vanishes, and we have total (destructive) interference.

Lastly, when the given oscillations differ in phase by quarter of a

wave-length, that is, when

, ,,_X 3X 5X=
4' T' I"'"'

then 2 = fl
2

'2 + a
2

"2
,
............ ..................... (4)

or the intensity of the resultant oscillation is given by the sum of

the intensities of the given oscillations. In this particular case the

given oscillations would appear to advance quite independently of each

other, that is, not to interfere the one with the other, like two linearly

polarized oscillations, whose planes of oscillation stand at right angles
to each other, and which compound, as we have seen in Chapter III.,

to an elliptically polarized oscillation. Two similarly linearly polarized

oscillations that differ in phase by quarter of a wave-length would

thus produce the same effect (intensity) as two similar linearly

polarized oscillations, whose planes of oscillations stand at right angles
to each other (cf. Ex. 4).

Two linear oscillations of the same wave-length and plane of

oscillation (polarization) do not therefore, in general, a^ 1-^ e in-

dependently of each other, like oscillations, whose planes o lation

are at right angles, but they interfere with each other, compounding
to a linear oscillation, whose amplitude (intensity) increases or

decreases, or even vanishes (a2

' = a
2"), according to the difference in

phase between the given oscillations (cf. formula (2)) and whose

phase is determined as a function of the given amplitudes and phases

by formula (3).

Phenomena of Interference: Bright and Dark Bands. We have

just seen that two oscillations (1) that differ only in amplitude and

phase co-operate or (partially) neutralize each other according to
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their difference in phase. The amplitudes of waves from one and

the same source are now, in general, the same, whereas the waves

themselves differ in phase according to the distances they traverse.

The resultant amplitude of two waves from one and the same source

would, therefore, be double and hence their intensity. four times that

of either wave singly, when their phases were the same, and vanish

entirely, when they differed in phase by half a wave-length. Let us

now consider the effect produced on a screen that is illuminated by
similar waves from two sources that are close together to obtain two

systems of similar waves (beams of light), we let the waves from any

given source pass through a very narrow slit and then through two

apertures (sources) that are close together (cf. pp. 112-113). Let the

screen of observation AShe placed at right angles to the mean direction

FIG. 11.

of propagation of the waves or to the perpendicular OP to the line

(plane) CD joining the two apertures (sources) C and D at its middle

point 0, where P is a point of the screen (cf. Fig. 11). The waves

from C and D will now co-operate at P, since the distances CP and

DP traversed by the same are equal, and we shall have a bright

spot of four times the intensity of that produced at that point by
either wave singly. As we recede along the screen from the central

point P upwards towards A, the distance to the one source C will

decrease and that to the other D increase, until we arrive at a point Pv
where the difference in these distances becomes half a wave-length ;

at that point the given waves differ in phase by half a wave-length
and thus neutralize each other, that is, the illumination will be zero.

Similarly, as we recede downwards towards B, the distance to C
will increase and that to D decrease, until we arrive at a point /y,
where the difference in these distances becomes half a wave-length and
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hence no illumination. The locus of the point P
l
or P^ is evidently

in the plane of the paper an hyperbola and in space an hyper-
boloid of revolution, that generated by the revolution of the given

hyperbola round the line CD as axis. The locus of P
l
on the screen

is the line (curve) intersected on the same by that hyperboloid ;
this

line will appear on the screen as a dark line or band. As we continue

to recede from the central point P, the distance to the one source

will increase or decrease and that to the other decrease or increase

respectively, until we arrive at a point P
2 (P.2

r

),
where the difference

in those distances becomes a whole wave-length ;
here the given waves

co-operate again and we have a bright spot similar to that at P
\

similarly, the locus of P2 is a hyperboloid of revolution, whose inter-

section on the screen determines the position of a (the first) bright

FIG. 12.

line or band. Similarly, as we continue to recede from the central

point P, we obtain alternately dark and bright lines or bands,

determined by the intersections of hyperboloids of revolution on

the screen.

Distance of any Band from Central Point. Let us determine the

distance of any band Pn from the central point P in terms of the

given quantities. The band Pn evidently corresponds to a difference

in the distances traversed by the two waves or to a retardation of the

one over the other of n half wave-lengths. We denote the distance

of the band Pn from P by x, the distance of the screen AB from the

sources C and D (the distance OP) by c and the distance CD between

the sources by b (cf. Fig. 12). With Pn as centre describe an arc of

radius PnC from C to the point E of the line DPn and draw the

straight line CE, as in figure. The line CE is now perpendicular to

OPn and CD to OP, therefore the angle DCE will be equal to the

angle PnOP and hence the right-angle triangle DCE* similar to the

* The angle DEC is only approximately a right angle.
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right-angle triangle PnOP. The similarity of these triangles gives

now the following proportion between their sides:

PPn :OP = DE:CE............................. (5)

or x : c =
^-

: CE approximately,*

which for small values of the angle DCE, corresponding to small values

of x, may evidently be written approximately

n\ ~_ n\
7x:c= :CD= : 0,

n. c, /\
or x =

~v~b
J .......................................

The given band will, therefore, be bright or dark according as n is

even or odd, whereas its distance from the central point will vary

directly as the wave-length (colour) of the waves employed.

Width of Band. By formula (6) the width of any band, from

darkness to darkness, is evidently

(n-'2)X~c c. ,~

that is, it is directly proportional to the wave-length (colour) of the

waves employed. Since now this width and the distances b and c

can be ascertained by measurement, we can employ this formula for

the determination of the wave-length of different kinds (colours) of

light. If the light-waves employed could be procured absolutely

homogeneous, that is, waves of exactly one and the same wave-length

(colour) A, then the screen would be covered entirely with similar J

bright and dark bands
;
but neither is the former possible nor is the

latter confirmed by experiment (see below).

Coloured Bands or Fringes. If the light waves employed are

heterogeneous or those of ordinary (white) light, we evidently get a

system of coloured bands or fringes : for, each wave-length or colour

represented in the given waves will give rise to a system of bands

of given (but different for different colours) width, the violet bands

being the narrowest and the red the broadest. Near the central

point or band, which will be- brightly illuminated but not coloured, the

* The angle DEC is only approximately a right angle.

f This formula holds only for small values of x ; for large values of x see Ex. 12

at end of chapter.

J Provided the screen be small, that is, formula (7) hold (cf. Ex. 12 at end of

chapter).
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resultant (coloured) interference bands will be very distinct, but, as we

recede from the same, there will be an overlapping of these numerous

systems of coloured bands, and this overlapping will not only increase

more and more but it will become more and more irregular, until

finally, at a comparatively short distance from the central band, the

total interference will become approximately one and the same at all

points in regard not only to (resultant) intensity but to colour; this

accounts for the rapid disappearance of the coloured interference bands

as we recede from the central point and their entire obliteration at

a comparatively short distance from the same. For similar reasons,

together with the fact that it is quite impossible to procure absolutely

homogeneous light, the interference bands of "homogeneous" waves

will extend to no great distance from the central band, although, of

course, to a much greater distance than the coloured bands obtained

from heterogeneous or white light; this explains the empirical fact

that only a small portion of the screen can be covered with inter-

ference bands in spite of the most skilful contrivances for procuring

homogeneous light.

Conditions for the Interference of Polarized Waves. We have

assumed above given paths of oscillation for the waves treated, that is,

we have examined polarized oscillations, whose amplitudes have been

assumed to remain the same for finite intervals. This assumption
holds now only for polarized waves that are obtained from one and

the same polarized wave. Two polarized waves obtained from an

ordinary (homogeneous) wave, for example, the ordinary and extra-

ordinary waves (rays) that emerge from a doubly refracting crystal,

upon the surface of which a ray of ordinary (non-polarized) light is

incident, will each be linearly polarized and at right angles to each

other (cf. Chapter VIII.), and each will retain its character, the same

amplitude, etc., as long as the vibration in the incident wave remains one

and the same. During this interval the two waves upon being brought
into the same plane of polarization would interfere like the ordinary
and extraordinary waves that are obtained from one and the same

polarized wave by double refraction (see below) ;
this interference is a

consequence of the difference in phase between the two waves, . due

to a relative retardation of the one with respect to the other in their

passage through the crystal and to the different paths traversed by
the same. The interval, during which the refracted waves retain the

same amplitudes or the incident wave the same direction of vibration,

is now infinitely short, since the direction of oscillation in an ordinary
wave changes, as we have observed on p. 72, thousands of times per
second. During the succeeding interval of one and the same direction
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of vibration in incident wave each refracted (component) wave would

retain one and the same amplitude, but these (component) amplitudes

would differ from those, which the refracted waves had in the first

interval, and hence also the interferences and resultant intensities

during those two intervals. It is now the mean of thousands of such

different intensities that is received as total effect by the retina of the

eye, and that mean would evidently be approximately one and the

same at every point of the field, quite regardless of the variation

of the difference in phase between the two (refracted) waves from

point to point, due to any difference in the distances traversed by
the two waves. The field or screen would thus be uniformly illumin-

ated, that is, there would be no perceptible or permanent interference,

in which case the waves are said not to interfere permanently.
If the incident wave is polarized, the refracted waves will retain

the same character or amplitudes for finite intervals and thus interfere

permanently when brought into the same plane of polarization ;
for at

those points of the field, where the refracted waves have the same

phase, there will be permanent co-operation or maxima of intensity,

and at those, where they differ in phase by half a wave-length, per-

manent (partial) neutralization or minima of intensity; that is, we
shall have phenomena of permanent interference, and the given waves

are said to interfere.

Conditions for the Interference of Ordinary Homogeneous Waves.

Two waves of ordinary homogeneous light from different sources or

from different parts of the same source (flame) do not interfere (when

brought to overlap). This is evident from the following : the character,

both direction of oscillation and phase, of the wave from the one source

will change irregularly and, as we have already observed, thousands

of times per second, with regard to the character (direction of oscillation

and phase) of the wave from the other source, and we shall thus

have co-operation and neutralization in such rapid succession that only
the mean of the same over the (finite) interval required for an im-

pression on the retina of the eye can come into consideration; and this

mean will be approximately the same at all points of the field, since

any difference in phase, due to difference in the paths traversed by
the two waves, can evidently be entirely neglected. From considera-

tions similar to those on the interference of polarized waves obtained

by double refraction from one and the same polarized wave, it is

evident that two ordinary homogeneous waves can interfere only
when they are exactly alike. To obtain two such similar waves, we
let a beam of ordinary light fall on a narrow slit (in a screen), placed

symmetrically near two apertures and with its length at right angles
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to the line joining the same
;
the slit must be made so narrow that it

admits only a line of light. Each point of the slit being symmetrical
with regard to the two apertures will now send waves to each aperture

that are alike, so that the resultant wave emitted by the one will be

similar to that emitted by the other. At any point of the region

(screen), where the waves from these two apertures overlap, the only
difference between them will be one in phase, due to the different

distances traversed; and this difference in phase will be one and the

same for the thousands of oscillations of different direction of oscilla-

tion arriving at the given point during the interval necessary for an

impression on the retina of the eye. At those points of the field,

where there is no difference in phase between the waves emitted by
the two apertures, we shall have co-operation or maxima of intensity,

at those points, where the difference in phase is half a wave-length,

neutralization or minima of intensity, and at all intermediate points

intensities that correspond to the position of the same with respect to

the points of maximum and minimum intensities
;

that is, we shall

have a (permanent) system of bright and dark bands
;
and the given

waves are said to interfere permanently.
Conditions for Interference of Heterogeneous Waves. For reasons

similar to those on the preceding page, it is evident that two waves

of white or heterogeneous light (cf. p. 72) can interfere only when

they are exactly alike
;

such waves may be produced in a similar

manner to that suggested above for the generation of similar waves

of homogeneous light.

Fresnel's and Arago's Laws on Interference. The above results on

the conditions for interference can evidently be summarized in the

following laws, which were first stated and empirically established by
Fresnel* and Arago :

(1) Two waves (rays of light) polarized at right angles do not

interfere under the same circumstances as two waves (rays) of ordinary

light.

(2) Two waves (rays) of light polarized in the same plane interfere

like two waves (rays) of ordinary light.

(3) Two waves (rays of light) polarized at right angles may be

brought to the same plane of polarization without thereby acquiring
the quality of being able to interfere (permanently) with each other.

(4) Two waves (rays of light) polarized at right angles and after

wards brought to the same plane of polarization interfere (permanently)
like waves (rays) of ordinary light, if they originally belonged to the

same wave (beam) of polarized light.

*Cf. Oeuvres, torn. 1, p. 521.

H
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Conditions for Interference of Elliptically Polarized Waves. We
have been considering above only the linearly polarized oscillations

and the phenomena of interference to which they give rise. Let us

now examine the interference of elliptically polarized oscillations and

waves. Since now an elliptically polarized oscillation can be resolved

into two rectangular linearly polarized ones, the interference of two

elliptically polarized oscillations could be determined as follows : we

resolve each elliptically polarized oscillation into any two rectangular

component linearly polarized ones, that is, we resolve each along any
two rectangular axes, as the y and z coordinate-axes, the ft-axis being

chosen as direction of propagation; the two component oscillations

along either axis would now behave like two linearly polarized

oscillations, that is, they would interfere permanently, if they belonged

originally to me and the same polarized wave, producing a system of

interference bands on a screen placed in the field, where they overlapped ;

but the two component oscillations along the one axis would, in

general, differ from the two along the other axis not only in amplitude
but also in phase, so that the system of interference bands produced

by the one pair of component linear oscillations would differ both in

intensity and position of the bands from that produced by the other

pair; the resultant effect produced on the screen would be that due

to the mutual action of these two systems of bands, which would

also be a system of bands. The resultant system of bands would

evidently be more or less distinct according as the given oscillations

were less or more elliptically polarized respectively, the bands

disappearing entirely, when the given polarization were circular, and

becoming most distinct, when it approached the linear polarization.

Resultant of two Elliptically Polarized (Plane) Waves. Let us

determine the resultant of two elliptically polarized plane-waves of

the same period of oscillation
; let the given waves be represented

by the analytical expressions

y'
=

a% sm n(vt
-

x'} \

z' = a
3

'

sin n (vt
- x' -

8')
I .

fi

.

and y" = a
2

"
sin n (vt

-
x"}

z" = &
3

"
sin n(vt x" - 8")

where x' and x" denote given distances on the a;-axis, the direction

of propagation, and 8' and 8" small augmentations of those distances.

By the principle of superposition the resultant of the waves (8)

will be that wave, whose two components are

y = y' + y"
=

<*>%
sin n (vt

-
x'} + a

2

"
sin n (vt

-
x"),

z=z' + z" = a
3

'

sin n(vt -x'
-

8') + a
3

"
sin n(vt

- x" - 8"),

f
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or, expanded,

y = (a2 cos nx' + a
2

"
cos nx") sin nvt - (a2 sin wa/ + a

2

"
sin wx") cos nvt,

z = [a3
'

cos n (x
f

4- 8') + a
3

"
cos 7i(#" + 8")] sin nvt

-
[ag

'

sin TI(' + 8') + a
3

"
sin n(x" + 8")] cos nvt,

or yOgSm ;i(ttf #), z=OgSinn(ttf a 8), ............... (9)

where ei
2,
#
3, ,

and 8 are determined by the equations

a
2
cos HSC' + 2

"
cos m" = a

2
cos TKB,

a
2

'

sin nx' + a.
2

"
sin TW;" = a

2
sin %#,

a
3

'

cos n(x + 8') + a
B

"
cos 71(0;" + 8")

= a
3
cos 71(0; + 8),

a
3

'

sin w(a;' + 8') + 3

"
sin 71(2" + 8")

= a
s
sin 71(2; + 8),

as follows :

a
2
2 = a

2

"2 + a
2

'"2 + 2a
2

'

a
2

"
cos w (x'

-
x")

a9
'

sin nx' + a9

"
sin w"

tan rt-x = -r
-

/

-
^
--s-

a
2
cos nx + a

2
cos n x

and

^ = a
s
'2 + a

3
"2 + 2a

s

'

o
8

"
cos w (' + 8' - x" - 8")

\

>i

a
3
sin 7i(x +8) + a

3 sm7i(a; +8)

The resultant oscillation will, therefore, be elliptic, that one, whose

rectangular linear component oscillations (9), their amplitudes and

phases, are determined by these formulae (10) and (11). Two elliptic

oscillations (8) will thus compound to an elliptic oscillation.

Spherical Waves* We have examined above waves, whose wave-

fronts have been assumed to be plane; that is, either their source

must be at infinite distance (the sun) or the waves themselves, upon

being emitted from a source at finite distance, must be brought by
means of a lens to advance along parallel lines. Strictly speaking,
such waves do not exist in nature, so that the analytic expressions

for the same would have no real meaning; they constitute only a

particular or limiting (theoretical) case of the general one, where the

source is at finite distance and the waves themselves are propagated

radially or in spherical shells or wave-fronts from the same, their

amplitudes decreasing as their distance from the source increases;

hence the termination "spherical" waves. These more general

spherical waves open up a much broader and more interesting field

for research than the (theoretical) ones examined above, since they
behave quite differently at different points of any region of finite

dimensions (cf. below).
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Resultant of two Linearly Polarized Spherical Waves. Let us fix

determine the resultant of two similarly linearly polarized spheric :

waves, for example those represented by the analytic expressions

if = . sin n (vt
-

x'}/ /yt \ /

o
= smn(vt-x")

where x' and x" denote the distances of the waves from their respe*

sources.

By the principle of superposition the resultant of the waves
(

will be the wave

y = y' + y"
== sin n(vt -x') + sin n (vt

-
x")

= a sin n(vt x),X X

where a and nx are to be determined from the equations

a' a"
.cosnx + --,cosnx = acosnx,

X X

a .
, a" .

-
7 sm nx + -if sin nx = a sin nx

which give
/O //O c\ t /,

2
a z a z 2aa

x>x
"

I (13)
, a'x" sin nx' + a"x' sin nx" [and tan nx = -7-^ ; ^

a x cos nx + a x cos nx

These expressions differ from those already found for plane-waves

(cf. formulae (2) and (3)) therein only, that they contain the distances

x' and x" of the given waves from their sources
;
otherwise the results

obtained and the conclusions to be drawn therefrom are similar to

those already stated on pp, 106-110.

Eesultant of two Elliptically Polarized Spherical Waves. Similarly,
we can determine the resultant of two elliptically polarized spherical

waves of the same period of oscillation, for example those represented

by the expressions

2/'
= -7 smn(vt-x')

z' = -4 sin n(vt -x'
-

8')

rr

and y" = -f- sin n (vt
- x"}y /y." \ /

.(14)
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iere x' and x" denote the distances of the waves from their respee-

ve sources. We find, namely, that the resultant wave is also

an elliptically polarized spherical wave, that, to which the two rect-

ingular linearly polarized spherical waves

y = a^smn(vt-x) and z = a
3 sinn(vt-x- 8),*

ise amplitudes and phases are determined by the following formulae,

.pound :

ax" sin nx' + ci^'x sin nx"
nx = ^7-7,

--
;

-Vb-7f

a x cos nx + a x cos nx

and
,*
= 5 + 2 + L cos (* + y - x" - 8")

tan
( + 8)

=
, u

& COSW# +o + ft X COS7l +0

Lastly, we observe that the resultant intensity of superposed oscillations,

as (14), is determined not alone by the squares of the amplitudes of the

given single oscillations but also by the interference-term or terms, to

which the superposition of the similar displacements (moments) in

question give rise (cf. Exs. 5, 6, 10 and 11 at end of chapter).

The Electromagnetic Waves
;
those of Problem 3, Chapter II. We

have considered above single waves, that is, waves propagated in a

given direction or along a given vector without any reference to

possible disturbances along other vectors. Such waves cannot a priori

be identical to electromagnetic waves, since the latter are, in general,

propagated from their source in all directions or along all vectors.

At the same time, we have made no attempt to identify the waves

treated above with the electromagnetic waves, having taken quite

arbitrary solutions of the general equation of wave-motion without

any reference to the relations that must hold between such solutions,

if the same are to represent electromagnetic waves.

The electromagnetic waves examined in Chapter II. are all linearly

polarized f spherical waves. As those of problem 3 are the most

general, let us employ the same for an examination of the field

traversed by two systems of linearly polarized f electromagnetic

waves, that are similar with regard to their radial distribution of

energy from source into space (see below).

* a.2 and as are here not constant but functions of the distances from the source'

v' and x".

tCf. p. 78.



118 ELECTROMAGNETIC THEORY OF LIGHT.

Superposition of two Primary Waves. We, first, examine the

mutual action of the two primary waves of problem 3 (cp. formulae (36,

II.)) at any point P of the field; they are represented by the moments

^ I' sin

and

where

=
^7 r sin o>",

= m' sin a/,

m" sin w",

= sin

'

sin </

.(16)

I' = a/ (/3'
2 + y'

2
)
- a (a%f + a

8Y)

>i
= $

2

'

(a'
2 + y'

2
)
-

/3' (a^a! + a
B'y)

^' = <(a'
2

= a; (a"
2 + y"

2
)
-
/T 'a" + a//)

.(17)

and

The waves represented by the moments X-^, Y^ Z^ are emitted

by any given source 0' and the moments themselves are referred to

any given system of rectangular coordinates a;', y', z' with origin at

0'';
the waves of the second system are emitted by any other given

source 0" and their moments X/', iy, Z^ referred to the system of

coordinates x", y" ,
z" . Let now the latter system of coordinates be

parallel to the former or given system x', y\ z', as indicated in the

annexed figure. The moments X/, Y^, Z^ are functions of a', /?', y',

the direction-cosines of the vector, along which the wave X', Y', Z'

is advancing, with regard to its coordinate axes (x', y\ z'}, and the

moments X^', Y{, Z{ the same functions of a", /?", y", the direction-

cosines of the vector, along which the wave X/', I
7
/',
Z is advancing,

with regard to its coordinate axes (x", y", z") (cf. formulae (17)); we
have attempted above to express this similarity between the two

systems of waves by referring to a similar radial distribution of

energy from the two sources into space.
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The Resultant Primary Wave; its Amplitude and Phase. The

resultant action of the two waves represented by formulae (16) at

any point P of the field (cf. formulae (17)) is now given by the

component-moments

JL\ = X,' + X-," = r I' sin n)' + /" sin o>"
i r r

= l' [sin nvt cos n(r' + 8')
- cos nvt sin n(r' + 8')]

n2

+ , /"[sin nvt cos n(r" + 8")
- cos nvt sin n(r" + 8")]

= n2
\ -, cos n (r + 8') + ^ cos n (r" -f- 8") sin nvt

[I'

I" ~\

-j
sin n (r + 8') + , sin n(r" + 8") cos nvt,

which can be written in the form

X
l
=

T
sin n[vt- (r + Sj)]

= a
l
sinni

vtGOsn(r + 8
1)-a1

cos?i^ sinw(r + 8j), (19)

where a
x
and n^ + SJ are determined by the equations

VI' I" ~\

n2 cos n (r
r + 8') + -^ cos n (r" + 8")

=
a^ cos % (r + 8

X )

[r

/" n
-j

sin 7i (/ + 8') + - sin TI (r" -f 8")
= ^ sin n (r + 8

X)

as follows :

[J'2

1"'2 VI" ~|
"\

^.+pi+V^
)J

and te(r+^=|^^^^^g/?' COS7?-(7' +6) + / 7' COS7i(7' + ) J

and similarly,

Y
l
= a

2
sin 71

[vt
-

(r + 8
2)] and Z

l
= a

3
sin n [vt -(r + S

3)],
. . . (20)

where
. a = n*

Fpj +^ + 2 ^^ cos %
(7-'

- r" + 8' - 8")

tan n(r + 8.)
=.

,m r cos 7i(r + 8
) + m r cos n (r + 6

)

and
3
2 = ?i4

f-^+^ + 2^ cos 91 (/
- r" + 8' -

V" sin n(r' + 8') + V sin n(r" 4- 8")^-; , J. ,

--
7-77 *k

p r cosn(r -f 8
) +p r cos n(r + o

)



120 ELECTROMAGNETIC THEORY OF LIGHT.

The resultant oscillation will, therefore, be that, whose rectangular

linear component-oscillations are

X
l
=

!
sin n [vt -(r + 8^],

Y
l
= a

2
sin n [vt

-
(r 4- 8

2)],

Z-i
= a

3
sin n [vt -(r + 8

3)],

where a
1?

a
2 ,

fl
3
and 8

15
8
2 ,

8
3 (r + 8p r + 8

2 ,
r + S

s)
are determined by

formulae (19A) and (20A). Since these component-oscillations differ

not only in amplitude but also in phase from one another, the

resultant oscillation will be elliptic, that is, the resultant of the two

primary waves (16) will be an elliptically polarized spherical wave

(cf.
Ex. 14).

Examination of Expression for Amplitude. The amplitude of the

resultant primary wave (19) and (20) will evidently be given by the

expression

The first term of the expression in the larger brackets, times n4
,
is the

amplitude squared of the wave X-^, Y^, Z^, were it advancing alone

through the medium, and the second term, times n4
,
that of the wave

X/', Fj", Z^ t
were it alone in the medium. The third term arises

from the simultaneous presence or action of both waves at any

point P; it represents the interference of those waves at that

point. The quantities 8' and 8" of this interference term can be

regarded as given, they express given differences of phase in the

two sources. The 8 in either source has also been assumed

(cf. formulae (16) and (18)) to have one and the same value along
all vectors from that source, that is, to remain constant throughout
the medium.

Resultant Primary Wave Elliptically Polarized; Conditions for

Linear Polarization of Resultant Wave. We have observed that the

resultant oscillations X,, Y
lt
Z

l
of formulae (19) and (20) take place

in elliptic paths. If now the sources of the two linearly polarized
waves (16) are near together and the point of observation P is at

considerable distance from those sources, the two oscillations (16)
will take place along approximately the same lines (see below),

provided the proportion

<:<:< =<':<:< ........................ (22)

hold between the amplitudes fl^', 2',
a
s

'

and
/',

a
2",

a
B

"

(cf. formulae
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(6, in.)). But, if these amplitudes are entirely arbitrary, the lines

of oscillation of the two systems of waves will, in general, make
finite angles with each other and the resultant oscillations Xv
Yv Z^ thus be highly elliptically polarized. This general case,

where no relation exist between the amplitudes a^, a
2',

a
s

'

and

a^'y #
2",

a
3

"
would, therefore, be of little interest, since, as we have

seen in Chapter III., two linearly polarized waves, whose planes of

oscillation are not the same, interfere less and less, as the angle
\ between the same approaches more and more 90.

\ In the following we shall thus assume the relation (22). As

the distance between the two sources decreases and the point of

observation P recedes from those sources, the angle between the planes

of oscillation of the two oscillations (16) will become smaller and

smaller, that is, the eccentricity of the elliptic path of oscillation

of the resultant oscillation Xv Yv Zl
will become greater and greater

and hence also the interference between the two given oscillations

(16); for, the nearer the sources are together and the further the

point of observation is removed from the same, the more the angles,

which the vectors / and r" make with their respective coordinate-axes,

and hence the direction-cosines of those vectors, a', /?', y and a", /3", y",

approach one and the same values. On the other hand, if the

distance between the sources 0' and 0" of the two waves (16) is of

the same dimensions as the distances of the point of observation P from

those sources, then the angle between the planes of oscillation of the

given oscillations will be of finite dimensions and hence the resultant

oscillation X^ Yv Zl
more or less highly elliptically polarized. This

general case is evidently of no particular interest as far as the

phenomena of interference are concerned, whereas, its examination

would offer difficulties, which we do not encounter, when the given

sources are very (infinitely) near together and the point of observa-

tion P is at considerable (finite) distance from the same; in the

general case all distances would namely be of the same dimensions,

so that the expressions in question could not be replaced by first

approximations, obtained on their expansion according to any small

quantity or distance (cf. below).
It should now be possible to deduce the conclusions just drawn

directly from the expression (21) for the resultant amplitude; let us

examine the same. The first and second terms of the given expression

cannot vanish, but they will assume given (positive) values at any

given point ; the third term contains the two factors, IT + m'm" +p'p",

which we shall call the coefficient of that term, and COSTI(/
- r" + 8' - 8");

the latter, which gives rise to the phenomena of interference, will
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vary periodically throughout any region of very (infinitely) small

dimensions, but it is not a function of the relative position of that

region with regard to the coordinate-axes; in this respect it differs

from the other factor or its coefficient, which, like the first and second

terms of the given expression, will evidently retain approximately one

and the same value throughout any such region. The mean value

assumed by the third term of the expression (21) in any such region will

thus depend alone on the value of the coefficient of that term in that

region. This coefficient can now evidently vanish
;
its vanishing would

determine given regions (cf. Exs. 15, 16 and 18), within which there

would be no interference of the given waves (16); the vanishing of

this coefficient would thus correspond to the particular case, where the

planes of oscillation of the two waves (16) make right angles with

each other. On the other hand, maximum values of the given

coefficient would correspond to the particular case, where the two

oscillations (16) are taking place along one and the same lines. On
the assumption that relation (22) hold and the two sources 0' and 0"

be very (infinitely) near together, the lines of oscillation of the two

waves (16) will be, as we have seen on p. 121, approximately one and

the same at any distant point, that is, the given waves will interfere

throughout all distant regions; in formula (21) this would evidently

correspond to that particular form of the same, where the coefficient

IT + m'm" +p'p"

does not vanish
(cf. below).

The Sources of Disturbance near together and the Point of Obser-

vation at Great Distance. On the assumption of relation (22) and

that the sources 0' and 0"-be very (infinitely) near together and the

point of observation P at considerable (finite) distance from the same,

a', ft, y' and a", /3", y" respectively will differ only infinitesimally from

one another
;
that is, we can put

a" = a
' =

a, /3"
=

/3'
=

0, y"
=

y'
=

y,

and hence I" : m" : p" = I' : m' : p
f

.

Formulae (17) then assume the particular form

TTlm =
Og' (a

2 + y
2
)
-

/3 (dj'a + 3'y)
= -

p" =< (a2 + 02)
-
y (a,'

a + a
2'/3)

=
^ ,

where K denotes the factor of proportionality between the a"s and a"'s.
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Replace /', m', p' and /," m", p" by these values in formula (21), and

we have

2 = n* [a/
2(P + y

2
) + 2

'2
(a

2 + y
2
) + a

3

'2
(a

2 + 2
)

[,72
+
^2

+^ cos w(r'
- r" + V -

8")],

2'j3 + <y)
2
]

or, most approximately,

(23)

where r denotes the mean distance of the point of observation from the

given sources.

Examination of Expression for Resultant Amplitude ;
its Behaviour

for Light Waves. The expression in the first pair of large brackets

of the expression (23) for the resultant amplitude is a function

only of the direction-cosines a, /?, y and the a's; it can thus be

regarded as constant in any region, whose dimensions are very

(infinitely) small in comparison to the distance of that region from

the given sources. A region of such dimensions is now one of the

dimensions of the wave-length A of light waves. In such a region

the factor in the second or last pair of large brackets of the ex-

pression (23) will not, however, remain constant, since its last or

interference-term will evidently vary rapidly, as r' - r" increases or

decreases by a quantity of the dimensions of that wave-length; the

first two terms of this factor are constants. The behaviour of the

resultant amplitude or intensity throughout the given region will

thus depend alone on that of the interference-term. The value

assumed by the interference-term will now vary as that of its factor

cos n(r'
- r" + 8' -

8"), which oscillates between the values + 1 and - 1
;

for the former value the resultant amplitude becomes a maximum
and for the latter a minimum. For light waves or electromagnetic

waves of very short wave-length, these maxima and minima will

succeed one another rapidly, as we recede from any point ;
the

breadth and distribution of these maxima and minima of intensity or

bright and dark bands will evidently be determined by formulae

similar to those of (6) and (7) above (cf.
also below).

Behaviour of Expression for Resultant Amplitude for Electro-

magnetic Waves Proper. If we employ the Hertzian or electro-

magnetic waves of wave-length of the dimensions of the meter, the
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interference-bands will be very far apart (cf. formulae (7) and (26)),

in fact, their width could be of greater dimensions than those of

the region, where the resultant amplitude (21) may be determined

alone by the value of the interference-term; this would evidently

correspond to a greater irregularity not only in the distribution but

also in the intensity of the bands. The detection of the interference-

bands of electromagnetic waves proper, at least their laws of distribu-

tion and intensity, would thus be more difficult than that of those of

light-waves.

The Interference-Term ;
Evaluation of same for given case. Let

us, next, examine the interference-bands of electromagnetic light-

waves, whose intensity at any point is determined by formula (23),

in any region P of the dimensions of the wave-length X of those

,P

FIG. 14.

waves. We choose the line, on which the two sources 0' and 0" lie,

as z-axis and the point half-way between the same as origin of

a system of rectangular coordinates x, y, z, denoting the distance

between the sources by 2e, as indicated in the annexed figure.
The distances / and r" of any point P of the given region from

the sources 0' and 0" will then be given by the expressions
r'

2 =
(x + e)2 +f + s?, r

"2 = (x- e)
2 + f + z*.

Since now, by assumption, is very small in comparison to x, y, z, we
can thus write
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or, by the binomial theorem, as first approximation

UN/VER'

hence r -r
(24)

The factor cos n(r'-r" + 8' -
6") of our interference-term will thus

assume here the form

cos n(r'
- r" + 8'- 8")

= cos n
+ y

2 + z2
'-

8"~\ . ...(25)
J

that is, maxima of intensity will appear, where

-S" = 0, A, 2A, ...,

and minima, where

A 3A 5A
o . . o 9 Q

\Ae
2 + y

2 + z2

Breadth of Interference-Bands. Let now the point P move parallel

to the z-axis and let us denote any two such points, whose distance

apart is of the dimensions of the quantity e, by P
l
and P

2 ;
the

factors cos%(?Y r-^ + 8' -8") and oosn(r2
r

r
2

ff + 8' - 8") of the inter-

ference-terms at these two points can then, by formula (25), be written

in the form

cos (rt
' -

r," + y -
6")

- cos .
+

Since now ^ and #
2

diifer from a; by a quantity of the dimensions

of e and the latter has been assumed to be very (infinitely) small

in comparison to x, y, z, we may evidently interchange x
l
and x

2
with

x in the expressions x^ + y^ + z* and x
2
2 +f + z2 without altering

except infinitesimally the values of the expressions for the given inter-

ference-terms
; we can thus write the given factors

7* \

cos n (r'
-

r{' + 8' - 8")
= cos n(,

V;

and cos n (r2
f + r

2

" + 8' - 8")
=
cosn(-j

\
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Two such points P
l
and P

2
will evidently determine consecutive

bands of one and the same intensity, when

hence .(26)

(cf. also formula (7)); that is, when the two points Pl
and P

2
are so

chosen that their distance apart is given by this expression (26),

they will be points of equal intensity (maxima, minima, etc.).

Summary : Laws of Interference. From formula (26) follow : (1) The

further the region P is from the sources 0' and 0" and the nearer

these sources are to each other, the broader are the interference-bands :

by a suitable choice of the former we could, therefore, always obtain

a measurable distance for the latter (xl
- x.

2 ).

(2) The longer the wave-length A of the waves employed, the

broader the interference-bands
;
for example, the bands obtained from

the red rays would be broader than those produced by the blue ones,

whereas for electromagnetic disturbances proper, as the Hertzian

waves, the distance between consecutive bands would be of quite

different dimensions from those for light waves (see above).

(3) Conversely, we can determine by formula (26) the wave-

length A, of the waves employed, on measuring the distance between

consecutive bands.

These results are similar to those already deduced above (cf.

p. 110).

Superposition of two Secondary Waves. Let us next examine the

resultant action of the two secondary waves that accompany the

primary waves represented by formulae (16) at any point P of

the field
;
these waves are represented by the moments

= ~T' cos w' =
-j%p' cos

and

where

= m cos

V

m

m" =

3< (p* + 7'2) + 3a'(a^ + a
8Y)

3a
2

'

(
a'2 + y'2) + 3/3' (

a^a! + a
3'y')

3a
8

'

(a'2

3/3" (a^a

.and

.(28)
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(cf. formulae (36, n.)); the systems of coordinates x', y', z' and x", y", z"

are those employed above, on p. 118 (cf. also figure 13).

The resultant action of the two waves (27) at any point P of the

field (cf. figure 13) will now, by the principle of superposition, be given

by the component-moments

=-' cos w
' + ~^ ^" cos w

"

=
,l' [cos nvt cos n(r' + 8') + sin nvt sin n

(r' + 8')]

+
2
T [cos nvt cos n (r" + 8") + sin nvt sin n (r" + 8")]

l' I' ~\

2
sin n (r + 8') + -^ sin n(r" + 8") sin nvt

+ \

-72
cos n(r + 8') + -^ cos n(r" + 8") cos nvt V,

which can be written in the form

Jf
2
=

ftj
cos n[vt

-
(r + 8

X )]

= ^[cos nvt cos n(r + 8
} ) + sin nvt sinn(r + 8^], ...... (29)

where a
x
and (r + Sj) are evidently determined by the equations

[/'

/" n
-^ cos n

(r' + 8') + -^ cos n (r" + 8")

and
aj sin n(r + 8J = n\~2 sin n(r + 8') + sin n(r" + 8")1

as follows :

[7'2

7"2 9/'7" ~|

^+p-4+4^ cos^r'- r
"
+8/ -

8//)
J

, ...(29A)

, . x
W2 sin n (/ + 8') + 1V2 sin w (/' + 8")and tan n (r + 8, ).-=,, .,

.-^ ^( .TT^
--^ JTTT

/ r 2 cos n (r + 8) + 1 r 2 cos n (r + 8
)

and similarly,

Y
2
= a

2
cos n [vt -(r + 8

2)]
and Z

2
= a

3
cos n [vt -(r + 8

3)],
...... (30)

where a
2 , n(r + 8

2)
and

3 , 7i(r + 8
3)

are determined by similar formulae

to (29A).

The Resultant Secondary Wave Elliptically Polarized. The re-

sultant oscillation Jf
,
F

2,
Z

2 represented by formulae (29) and (30)

is evidently elliptically polarized (cf. Ex. 20) like the primary oscilla-

tion, which it is accompanying.
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The amplitude of the resultant oscillation at any point P is

evidently

'm" + p'p" , , <>, sj,, x ~l

,2 //2

r ^
cos /i (r -r + S 8

)

Sources of Disturbance near together and Point of Observation at

Great Distance. The expression (31) is similar to the one (21) found

for the amplitude of the primary waves
;

the same conclusions as

those drawn from the latter (cf. pp. 120-122) will, therefore, hold

for the given expression. For similar reasons to those set forth

above we shall also restrict ourselves here to an examination of the

particular case, where the relation (22) holds between the given

amplitudes, the sources 0' and 0" are very (infinitely) near

together and the point of observation P is at considerable (finite)

distance from the same; in which case a", ft", y" and a', /3', y re-

spectively will differ only infinitesimally from one another and may
thus be interchanged.

Expression for Resultant Amplitude. In the given particular case

formula (31) can evidently be written

2 K cos n(r'
- r" + V- 3")],

where l" = K l' = Kl m" = Km' = Km p" = Kp'
= Kp

(cf. p. 122) ; or, if we replace here I, m,p(l', m',p') by their values (28),

<$ =^{42 +<2 +<2
)
- 3 K'2 (/

g2 + y2) +

+ 6 (a^'ap + a^a^ay + a^'a^'

x [1 + K2 + 2/< cos n(r'
- r" + 8' -

8")]

=^[K
2 +<2 +<2

) + 3 (*i/a + "*P + <r)
2
]

-8")] .......... (32)

This expression is similar to that (23) already found for the

amplitude of the primary wave, being composed of two factors, the

one a function of the direction-cosines a', /?', y and the &"s and the

other a function of the distances / and r". The interference-term has

the same form in both expressions, so that the results obtained above

for the interference-term of the primary wave will hold here for

that of the secondary wave (cf. pp. 124-126); we cannot, however,

conclude that the phenomena of interference, to which the secondary

waves may give rise, will be the same as those produced by the
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primary waves, as an examination of the expressions (23) and (32)

and the relative behaviour of the two systems of waves will show.

Behaviour of Resultant Amplitude for Light-Waves. For light-

n
waves the factor -

2
f formula (23) for the amplitude squared of the

primary waves will be very (infinitely) large compared with the corre-

ri2

spending factor -^ of formula (32) for the amplitude squared of the

secondary waves except in the neighbourhood of the origin; at

considerable (finite) distance from the same the phenomena of

interference, to which the latter waves might give rise, would thus

vanish, when compared with those produced by the former. We
have now seen above, unless the point of observation P be removed

to considerable distance from the sources, that the oscillations to be

superposed will not take place in the same planes, and hence that

the interference-formulae established will not hold even approximately ;

this would correspond, on the one hand, to a less marked interfer-

ence between the secondary waves and, on the other hand, to a certain

irregularity in the resultant intensity and distribution of the same

throughout any region that is not at considerable distance from the

sources. The detection of phenomena of interference between two

systems of secondary waves of light would thus be difficult not only
at considerable distance from the sources but in their neighbourhood.

Behaviour of Resultant Amplitude for Electromagnetic Waves

Proper. For electromagnetic waves proper (the Hertzian) the quan-

tities n4 of formula (23) and n2 of formula (32) are of the same

dimensions, and hence the detection of the secondary waves not only in

the neighbourhood of the sources but at considerable (finite) distance

from the same possible (cf. p. 53) ;
but at such distances the above

interference-formulae will hold for regions of the dimensions of the

wave-length of light-waves, but only approximately for those of the

dimensions of the wave-length of the waves in question. Since now
the interference-phenomena sought could be observed only in regions

of the latter dimensions (cf. p. 124) arid throughout such regions not

only the two systems of waves would be only approximately similarly

polarized but also the formulae in question only approximately hold,

all observations on interference-phenomena between the two systems
of secondary waves would be accompanied by difficulties.

Interference-Phenomena of the Primary and the Secondary Waves
;

those in Regions, where the latter alone appear. The most distinct

phenomena of interference would evidently be the familiar ones

produced by the primary waves (of light) at considerable distance from
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their sources, whereas those to which the secondary waves might

give rise would have to be sought under considerable difficulties in the

neighbourhood of the sources. The detection of the latter would

evidently be facilitated greatly by the entire disappearance of the

former. This would be the case only when the primary waves them-

selves disappeared entirely ;
that now the primary waves, those repre-

sented by formulae (16) to (18), disappear, the first factor in the

larger brackets of the expression (23) for the resultant intensity must

vanish
;

* this will be the case in those regions, where
2 + a^ + a

3

'2
)
-
(a/o + ajft + a

3'y)
2 =

0,

that is, along the surface

- 2o
1
'a

2'a;y
- 2a

1
'a

8
'a# - '2a

2
'a

B'yz
=

0,
*

................. (33)

which is the equation of a cone with apex at origin (cf. also Ex. 15).

Along this surface (the vector a : /3 : y = a-{ : a
2

f

: a
s')* the formula

(32) for the amplitude squared of the resultant secondary wave will

evidently assume the form

a2 =^4K
2 + a

2

'2 + ft
3
/2

)[l + K2 + 2KCOS7i(f'-r
//

+ 6'-S
/

')]
..... (34)

Since this expression does not contain the direction-cosines, the

resultant amplitude will have one and the same value at all points

on the surface (33) (the vector a : j3 : y = a^ : a
2

'

: a
8')* that are

equidistant from the given source. The entire disappearance of the

primary waves along this surface (33) (the vector a : /3 : y = a-^ : a
2

'

: a
5')*

would facilitate the detection of the interference-phenomena, to which

the secondary waves might give rise, along the same. We recall

here the important property of the secondary waves in those regions,

where the primary waves disappear, namely their longitudinality

(cf. p. 61).

Point of Observation near Sources of Disturbance
; Expression for

Amplitude of Eesultant Secondary Wave. Lastly, let us examine the

case, where the distance between the sources 0' and 0" is of the

*0n the assumption that the amplitudes I', m'^p' and /", m", p" of formulae (17)

be real and not imaginary quantities, not only the given factor, I2 +m2
+p*, but

also the different terms of the same must vanish ; this is, for real values of the

amplitudes of the component-oscillations (16) only such values would evidently
come into consideration here the relations

P=m?=p'2=
must also hold. These relations determine the vector a : /3 : y a-^' : a./ : as

'

(cf.

p. 6.1) one solution of equation (33) which will evidently lie on the cone repre-

sented by that equation. The vanishing of the two primary waves along other

vectors of the cone (33) would evidently correspond to imaginary values of the

amplitudes I', m', p', and I", m", p" of the component-oscillations of those waves.
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same dimensions as the distances of the point of observation P from

the same, and, for simplicity, when a
1

' = a
2

' = a
3

' = a
1

// = a
2

" = a
3

// =
1,

that is, the two sources shall emit similar waves. This particular

case is of importance, since, as we have just seen, the marked

phenomena of interference of the secondary waves must be sought
in the neighbourhood of the given sources, that is, the point of observa-

tion P must be taken at a distance from the sources, that is, of the

same dimensions as the distance between the sources themselves. For

the given case (region) the general formula (31) for the resultant

amplitude of the secondary wave will evidently assume the form

i.(a
'

+ f3' + yj l+(a" + 0" + /)2

(35)

r'
4 r"4

2 [1
-

(
a

' + p 4 yj -
(a" + ft" + y'J

+ 3(a' + ff + y') (a" +y + /) (a a"

cos n (/-/' + 8'
-3")}

The Sources of Disturbance on x-Axis
;
Coefficient of Interference

Term. Let us, next, assume that the sources 0' and 0" lie on one and

the same axis x at the distance b apart; the following relations will

then hold between the coordinates x, y', z' and x", y", z" of any point P :

x" = x' + b y"
=

y' z" = z', \ ...................... (36)
hence r

"2 =
(x' + b)

2 + y'
2 + z'

2 }

For the given particular case (36) we can evidently write the

coefficient of the interference-term of the above expression (35) as

follows :

/' -'' '*

3

2
-]\

Jj

(cf. formula (31))

(^ + y' + ^)2 [(^ + J)2 + ^2 + s'2]
_
(^ + J + y' + ^/2 2 2

3 (x' + y' + z'} (x' + b + y' + z'} [x'

I
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Coefficient of Interference-Term on Screen
|| f/z-Plane. On a screen

placed parallel to the ^-plane at the distance c from the source 0' the

coefficient (37) of the given interference-term will assume the form

IT + m'm" + p'p"

+ cz
'+ y'

It is now evident that the interference-bands will vanish in those

regions on the given screen, for which this coefficient* vanishes, that

is, along and in the neighbourhood of the curve

y + z')[c(c + tf + z') + b (2c
-

y'
-

0')]
= 0*

Regions of greatest Interference. On the other hand, the inter-

ference will evidently be greatest at those points on the given

screen, where the coefficient (37A) of the interference-term becomes a

maximum; and this will evidently be the case in those regions,

where the value of this coefficient approaches the particular values

assumed by the coefficients of the first two terms of the expression

(35) for the resultant amplitude. Let us now determine the

region, in which the coefficient of the interference-term and that

of the first term of expression (35) are the same for the given par-

ticular case
;
the region sought will evidently be that determined by

the relation

(cf. formulae (35) and (37A)), or, if we replace here a', /?', y by their

particular values
(cf. formula (36)),

which relation is evidently satisfied, when y'
= ^ = 0,t the point in

which the ic-axis meets the given screen
;
a result which we might

have anticipated.

Similarly, it is easy to show that for y
f = z' = Q the coefficient of

the second term of expression (35) assumes here the same value as

that of the third or interference term (cf. Ex. 21).

The neighbourhood of the point y'
= z' = on the given screen would

thus be suited best for an observation of the interference-phenomena

produced by the given secondary waves.

*Cf. foot-note to p. 130. fThen r"2= (c + 6)
2

(cf. formulae (36)).
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Expression for Resultant Amplitude on Screen; approximate Ex-

pressions for same in Region of greatest Interference. The resultant

amplitude of the given secondary waves at any point on the screen

x = c will evidently be given by the expression

2(c
2 + y2+ '2)[2(C

2 + y
'2 + ,j/2 + <y + Cs' + y'g') + ft

+ 26(c + ?/ + s')[c(c + y' + ^) + b('2c
-

y'

2
cosn

(
r

' ~ r
"
+ 3'~ 8

"

which in the neighbourhood of the point y'
= z' = will assume the

approximate value

+ y' + z' 1 c + b + y' + z' I
"]

/*
A'4

r,_ f ,_
'

c(c. + b) r 2r

(cf. Ex. 22) ; or, if we replace r' and r" by their approximate values,

_

x cos w/ + r" + 8' -

Formula (39) holds for both light-waves and the electromagnetic

waves proper ;
formula (39A) would hold also for both types of waves,

whereas formula (39B) would hold for the former most approximately
but for the latter only approximately. We obtain a more approximate

expression for the electromagnetic waves proper on replacing r'
4

,
r"4

and r'-r"'
2 of formula (39A) by their more approximate values

and r 2 + r"2 = c
2
(c + b)

2 + [c
2 + (c + b)

2
](y

2 + z'
2
).

The Electromagnetic Waves of the General Problem of Chapter III.

and Phenomena of Interference. The electromagnetic waves treated

in the more general problem of Chapter in. and represented by
formulae (7, in.) would be of little interest for us here, since they
are more or less highly elliptically polarized and would thus give

rise only to very small and irregular variations of intensity when

superposed (cf. p. 114).
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EXAMPLES.
1. Show that the equations

cos n (x
f -

x")

a' sin nx' + a" sin nx"
and tan nx= -

-,

-
7,

--

n cos nx + a cos nx

which may also be written in the form

a' sin n(x~x') + a" sin n (x - x") -

(cf. formulae (2) and (3)), can be represented graphically as follows :

Take any fixed line OX and draw OP equal to a', and making the angle nx'

with OX, similarly draw OQ equal to a", and

making the angle nx"=QOX, then, if we com-

plete the parallelogram OPRQ, its diagonal

OR will be equal to a and the angle ROX
which it makes with OX will be equal to nx,

while POQ will be equal to the difference

in phase n(x'-x") (cf. the annexed figure).

The amplitudes a' and a" will, therefore, com-

FIG. 15. pound like forces.*

2. Show that a right-handed circular oscillation, for example

y' 2

'

sin n (vt -x'},

z'= - a.2
'

sin n (vt - x' - j J
-

2

'

cos n(vt
-

x'),

and a similar left-handed circular one, namely

y"= a2

'

sin n(vt
-

x'),

z"= + a.2
f

sin n ( vt - x' - -
j

= -
2

'

cos n (vt
-

x'),

compound to a linear oscillation, namely

y= 2a.2
'

sin n (vt
-

x').

3. Show that the elliptic oscillation

y= a2 sinn(vt-x), z= -a3 sinn(vt-x--J=a :i cosn(vt-x)

may be regarded as the resultant of the two oppositely directed circular

oscillations

' '

and y"-^(^2
~ as) s'mn(vt

-
x), z"= -

^(a.2
-

3 )
cos n(vt

-
x).

4. The intensity of two similarly linearly polarized oscillations that differ in

phase by quarter of a wave length is the same as that of two similar linearly

polarized oscillations, whose planes of oscillation are at right angles to each other.

Two such pairs of oscillations are

y"=a"sinn(vt-x"))'

* Cf. Preston, Theory of Light, pp. 48, 49.
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/'
= a' siun(vt-

where x' and x" are entirely arbitrary.

The resultant (oscillation) of the former pair (A) is, by the principle of super-

position (cf. p. 13),

y= asinn(vt -x), ........................................... (c)

where a = Ja'2 + a'"
2

................................................. (D)

ari j 1 a' sin nx' - a" cos nx'ana x= - arctan :
;
-

^
-

r >

n a cosnx +a smnx

the particular form assumed by formulae (2) and (3) respectively, when

The intensity / (generated by a complete oscillation) of the resultant oscilla-

tion (c) is

7
1 CTm fdy\

z
. ma?nW

I=
TJ 2U|*=-2r-

or, by formula (D),
-

The intensity of the elliptic oscillation (B) (cf. formulae (2) and (3), in.
)
is now,

since its component-oscillations take place entirely independently of each other,

given by the sum of the intensities of those component-oscillations, that is,

rr

/

4
m(a'

2 + a'^nW

5. The resultant intensity of the two similarly linearly polarized oscillations

y' = a'sinn(vt-x'),

y"=a"sinn(vt-x")

(cf. formulae (1)) is given by the expression j

where m denotes the mass of the oscillating element.

The intensity / of any linear oscillation y is given by the integral
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Here y= y'+ y"=a' sin n(vt
-

x') + a"sinn(vt - x") ;

/y*> rf
hence 7=

%
/ w2y2[' cos ?i (v -#') +

"
cos w(v- a/')]

2 <&

'2

f
!*co&n(vt -x")dt

+ la!a!
1

/ cos n (vt
-

x'} cos n(vt- x") dt \
"

rr
+ 2a'a" I [cos nx' cos nx"cos

2nvt + sin nx' sin nx"sm2nvt

+ sin n (x' + x") cos nvt sin nvt] dt \

wmV f a'
2

I sin 2n (vt
-

x') I
T a"2 1

4
sin .2w (irf

-
x")--

+ a'a" cos wa/ cos wa;" / (
1 + cos 2nvt) dt

o

+ a'a"sin nx' sin 7^0;" /
(
1 - cos 2nvt) dt

o

+ a'a" sin ?i (x' + x") I sin 2nvt dt \

sin 2?

,,\ sin2nvt\ T
. , ,,. I cos2w^|

in
+ a'a sm nx' sm ?ia/' I ^ --^ + a a sm n(x + x ) I

--
^2ww

I |
2m; |oJ

Fa'2 + a"2 , , ,. . ,
. ,,m~\-

o
- ^+ aa COS 7la; COS ?ix ^+ a a S111 W^ Sin nX *

[a'
2 + a"2 + 2a'a" cos n (x'

-
x")].

Q- E - D -

Derive this expression also directly from the resultant oscillation

where a and x are determined by formulae (2) and (3).

6. Show that the resultant intensity of the two elliptic oscillations represented

by formulae (8) is given by the expression

/=
p-[<

2 + a/2 + 3

'2 +<2 + 2a2'a./ cos ?i (x?
-
x"}

+ 2a3

/a3
"
cos n (x' + 5'- x" - 5")],

where m denotes the mass of the oscillating particle.

7. Determine the difference in phase nd between the components (9) of the

resultant elliptically polarized plane-wave examined on p. 115.

The formula (11) for tan n (x+ 5) can be written

-
- tan nx tan nd
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where A - a* sin n (x> + d>
) + a*" si

-

a3

'

cos n (x' + 5') + a3

"
cos n (x" + d")

'

which gives the following value for tan nd :

A -t- tan nx
tan nd=

1+A tan nx'

Replace here A by its value (a) and t&nnx by its value from formulae (10),

and we have

tan nd

[03' sin n (x' + d') + as
"
sin n (x"+ d")][a2

'

cos nx' + a2
"
cos nx"]

__+O3
'

cos n (x' + 8') + CT/ cos n (x" + 8")] [a2
'

sin nx' + a./ sin nx"]~
[a3

f

cos n (x' + 8') + as

"
cosn(x" + 5")][a.2

'

cos nx' + 2
"
cos nx"]

+ [a3
'

sin n (x' + d') + as
"
sin n (x" + 5")][a2

'

sin nx' + a./ sin nx"]

a.2'a3
'

sin n (2x
r + 8') + a.2"a3

'

sin n(x' + x" + d')

2

'

3
"
sin n(x' + x" + d") + a2"a3

"
sin n (2x" + 5")

a2'a3
'

cos w6' + a2
"a

3' cos n (
x> ~ x" + $') + a-^'as" cos ?i (a;'

- x" - 5") + a,/a3
"

8. Determine the resultant of the two elliptically polarized spherical waves

' = -4 sin ?i ( v^ - a;' - -
J

= --* cos w (v<
-

x'),

and

The components of the resultant wave are

y= y' + y"= -^- sin n (vt
-

x') + -\ sin n(vt
-

x") = a.2 sin n (vt
-
x),*

where 2 and nx are given by formulae (13), and

z= z' + z"= - cos n(vt
- xf)-coan(vt - x")= - a3 cos n(vt -x-8),*

'JC 00

where a3 and n(x + d) are determined by the equations

as follows :

-4 cosnx' + - 7̂X OC

^T sin nx' +^ sin nx"- a3 sin n(x + 8),

and tan ( + gf) ^ ,

Oj ar cos wa: + a3 x
(cf. formulae (15)).

Show, when a2
' = a3 and a./= a3", that is, when the given oscillations are

circularly polarized and similarly directed, that 5= 0, that is, that the com-

ponents of the resultant oscillation have the same phase.

*Cf. footnote top. 117.

t This 5 is evidently not identical to the 5 of formulae (15).
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9. Show that the difference in phase nd between the components of the

resultant elliptically polarized spherical wave represented by formulae (14) is

given by the expression

2'a3V2 sin n (2x
f + 8') + az"a3'x'x" sin n(x' + x" + 8')

+ a2'as"x'x" sin n (x' + x" + d") + a."a."x'2 sin n (2x" + d")

a2'a3V2 cos nd' + a2"a3 x'x" cos n (x'
- x"+ d')

+ a2'a3"x'x" cos n (x'
- x" - d") + a^a^'x"

2- cos nd"

tan nd=

10. Determine the resultant intensity of the two similarly linearly polarized

spherical waves represented by formulae (12).

The intensity / in question is given by the integral

j J^

i

where y= asinn(vt-x), and a and nx are determined by formulae (13).

We thus have

/=-

o

wwVa2

IT
o

or, on replacing a2
by its value,

! rf wnv&w

j
[l+cos2n(vt-x)]dt=

11. Show that the intensity of the resultant elliptically polarized spherical

wave represented by formulae (14) is given by the expression

, fa2
/2 + a3

'2 a "2+<2 2 _
, ,

,
I=

"~4~ I
V2 + "

X"2 + vv>K< cos n(x' - x") }

+ as'a3
"
cos n (x' + d'- x" - d")] J

12. The distance a; of a dark or bright point or band at considerable distance

from the central band is given by the expression

n\a
-== = X........................................... A)
\/462 -7i2\2

For large values of x, that is, large values of the angle DGE of Fig. 12, the

distance GE cannot evidently be replaced by the distance CD between the sources.

We must, therefore, employ the following proportion instead of that (5) chosen

on p. 110:

PPn :OPn=DE:CD,

or x:Jtf +tf~:b,

^which gives x2 =:_J _ . Q.E.D.

26
This expression shows that the number of bands cannot exceed .

A

13. The width of a bright band at considerable distance from the central

band is given (approximately) by the expression

2\a-
r= Xn Xn 9...................................... (A)n n -
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By example 12 (cf. formula (A)) the exacter expression for the distance between

two consecutive (dark) bands that are at considerable distance from the central

band is

n\a (n 2) \aX"
~ *n~*~

\/4&2 -7i2X2
"
\/462 - (n

- 2)^'

Since now 462 is large in comparison to M2X2 even at considerable distance from

the central band and n2
is very large compared with n interference has been

observed with retardations of over 200,000, even 500,000, wave-lengths the terms

4X2 and - 4X2 under the square-root-sign of the second term of this expression
for the width of band may evidently be neglected in comparison to the two other

terms, 462 and -w2X2
,
and thus rejected. The given expression can thus be

written most approximately
n\a _ (?a-2)X _ 2Xa

Xn *n~ 2
~\/4&2 -n2X2 \/4&2 - w2X2

~
v/462 - ?i

2X2
'

Observe that this expression reduces to that of formula (7), the one in general

use, for small values of n.

A comparison of the expression (A) for the width of any distant interference

band with that (7), which holds only for bands near the centre, shows that

the bands do not retain one and the same width, as we recede from the centre,

but that they increase in width. Take, for example, the 10,000th interference

band of waves of wave-length 2000 x lO' 6 mm., that is, ?i= 104 and X=2xlO- 3
.

Xa
By formula (A) the width of this band is / -. Show then that for

v62 - (10mm.)
2

6= 10 cm. the 10,000th band would be about 5'4 % broader than those near the

centre, and that for 6= 10 mm. the 10,000th band could not appear.

14. Show that the resultant oscillations Xlt Ylt Z1 represented by formulae (19)

and (20) take place in plane elliptic paths (cf. p. 120).

15. Show, when the sources 0' and O" of the waves represented by formulae (16)

are very (infinitely) near together and the point of observation P is at consider-

able (finite) distance from the same, that the coefficient l'l"+ m'm"+p'p" of the

interference term of the expression (21) for the amplitude of the resultant

(primary) wave assumes the form

IT + m'm" +p'p"= a/a/' (/3
2 + y2

) + a2'a./(a
2 + y

2
) + as'as"(a

2 + /3
2
)

-
(a^a^

1 + a2'aj") a/3
- (a/a/+ a/a/') a

where a = a' = a", /3
=

j8

/=
j8", y = y'= y";

that is, the given coefficient vanishes along the surface

) xy - K'a/ + e^'a/')^ -
(
a2V + 3

the equation of a cone with apex at origin.

16. On a screen placed parallel to the yz-plane at the distance c from the origin

formula (A) of Ex. 15 assumes the form

/' + a2'a2") z
2 -

(a.2'a3
"+ a3'a2") yz

-
(

the equation of a conic.
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Show, when a/= %"=(), that the coefficient I'I" + m'm" +p'p" of the given
interference-term vanishes at the points

y=z= f_
OaV +OaV\--

on the given screen (x=c), whereas the coefficients l'
2+ m'2

+p'
2 and I

rf2 +m"2
+p'"

2

of the first and second terms of the given expression for the resultant amplitude
do not vanish at those points.

17. Show, when the distance between the sources 0' and 0" is of the same

dimensions as the distances of the point of observation P from the same, that the

coefficients of the different terms of the expression (21) for the amplitude of

the resultant (primary) wave assume the form

I'
2+ m'2 +p"> = 3 -

(
a' + /3' + y' )

2
,

I"
2 + m"2 + p"

2= 3-( a" + p" + y")
2

,

IT + m'm" +p'p"= 3 -
(a' + p' + y')

2
-(a" + p" + y")

2

+ (a' +p + y')(a" + p" + y")(a'a" + pp"y'y").

On the assumption that the sources 0' and O" lie on one and the same axis x

(cf. formulae (36)), these coefficients assume the form

z'
2
-x'y'-x'z'-y'z'),

2 q ~

IT + m'm" +P'p"=-^ J3
(x'

2 + y'
2 + z'

2
) [(x' + &)

2 + y'* + z'*]

/2 - x'y'
- x'

z> - y'z">

18. On a screen placed parallel to the 7/z-plane at the distance c from the

source O' the expression for the coefficient I'l" + m'm" +p'p" of Ex. 17 assumes the

form

(A)

The interference-bands will thus vanish at those points on the given screen,

where this expression for the coefficient vanishes.

The interference-bands will be most distinct at those points on the given

screen, where the coefficient (A) becomes a maximum, that is, where the value

of this coefficient approaches those assumed by the coefficients of the first

and second terms of the given expression for the resultant amplitude.
Show that the coefficients of the different terms of the given expression for the

resultant amplitude all assume the same value at the point y'=z' = on the

given screen.
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19. Show that the amplitude of the resultant primary wave of Ex. 17 is

given approximately by the following expression in the neighbourhood of the

point y
'

z' = on the screen x c :

'c-y'-z
f

(cf. also p. 133).

20. Show that the resultant secondary oscillations represented by formulae (29)

and (30) take place in plane elliptic paths.

21. Show that for x" = c + b, x' = b, y"= y'
= z"= z' = (cf. formulae (36)) the

coefficient of the second term of expression (35) assumes the same value as that

of the interference-term.

22. Determine the approximate value of the expression (39) in the neighbour-
hood of the point y' z' 0.

In the neighbourhood of the given point y'
2 and z'

2 will be very small in

comparison to y', z' and the given quantities c and 6, and they may thus be rejected

in the determination of the coefficients of the different terms of the given

expression ; we thus have

t*
, ^ ,*

r* 4.W* 4-W- _+m +P
c + bf c + b

and l'l" + m'm"+p'p"

c(c + b)

The given expression can thus be written

y' + z' I c + b + y' + z' 1

T~~^ +~

23. Determine and examine, as in text, the expressions for the amplitudes of

the resultant primary and secondary waves obtained by the superposition of two

(similar) electromagnetic (Hertzian) waves of the type represented by formulae (9)

of Chapter II.

24. Determine and examine the expressions for the amplitudes of the magnetic

waves that accompany the resultant (electric) primary and secondary waves

examined in the text, those represented by formulae (19) and (20), and (29) and

(30) respectively.



CHAPTEK V.

HUYGENS'S PEINCIPLE.

Eectilinear Propagation of Light. In Chapter I. we have observed

that the wave-theory, as first postulated by Fresnel, accounts for the

rectilinear propagation of light and thus furnishes another argument
for its universal acceptance. At first sight a rectilinear propagation
would appear to be explained better by the emission than by the

wave-theory, which would argue in favour of the former. On the

other hand, a closer examination of light phenomena shows that

light is propagated only approximately in straight lines and that, like

sound, although in a much less degree, it bends round the edges

of obstacles placed in its course
;

for example, the actual shadow

cast by a small body that is illuminated through a narrow slit is

smaller than the geometrical shadow. The rectilinear propagation of

light is, therefore, only an apparently or approximately rectilinear

one. It is evident that the emission theory would fail to account for

any but a strictly rectilinear propagation, whereas, as we have main-

tained above and shall confirm below, the approximately rectilinear

propagation of light in an homogeneous medium and the bending of

its rays round the edges of obstacles placed in its course are direct

consequences of the wave-theory.

Huygens's Principle. Huygens's attempt to explain the rectilinear

propagation of light was founded on his so-called "principle," which

can be stated as follows : Every point of any wave-front of a system
of light waves is conceived as the source of a system of elementary
or secondary

* waves that are propagated radially from that point
with the same velocity as that of the light waves themselves. The

envelope of the elementary waves emitted from the various points or

sources on any given wave-front will, after the elapse of any given
* Not to be confounded with the secondary waves of Chapters II. and III.
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time, evidently coincide with the wave-front of the given wave at

that time. Huygens now assumes that the effective parts of these

elementary waves in generating the new wave-front are confined alone

to those portions of them that touch the given envelope. In this

manner any and all subsequent wave-fronts are supposed to be gene-
rated and the wave itself thus propagated.
We may illustrate Huygens's principle as follows: Let be the

source of a system of (spherical) waves, AB a screen with aperture

CD placed in their course, and EF, an arc of radius r, any given
wave-front of the pencil of waves, that are passing through the given

aperture, at any time
,
as indicated in the annexed figure. According

to Huygens's principle every point of the wave-front EF is to be

FIG. 16.

conceived as a source of elementary (spherical) waves, after the lapse

of any time ^ each source will have emitted a (spherical) wave, all

the wave-front elements of which have advanced to one and the same

distance, t^ from that source, where v is the velocity of propagation
of light. The wave-fronts of the elementary waves, emitted from

the various points or sources on the given wave-front EF, at the

time t, will thus be spheres of one and the same radius, t^ described

about those points as centres, as indicated in the above figure. The

envelope of these spheres is now the two arcs E
1
F

1
and E

2
F

2
of radii

r-t^v and r + t-p respectively, and not, as Huygens assumes, the

latter alone, which evidently represents the wave-front of the given

wave at the time tr The arc E^ would correspond to a wave
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dot the effb-

of them that v/ndb the envelope of the

would be jrop^'ited radial]v from (and

tnrfcanee 0, that is, ligfrt would be

principle b.v,-,,--. . --:> !v. .; :_~-

bflity of accounting for tie alight bending of light rav (waves)

edgn,ae those C and /> of figure 16, or upon their

.'-.'" . *.

Huygenss Priaeqiie aad tic Lav* fWBftiiliM a

It is easr to show that the laws of nflulM and irfiafAimi of nrs

on tie Mmptinn of Huygens* principle ;* but this aigues little in

favour of the above form of nil rnliilim of die same, snee these laws

are only direct cooacquenees of tibe s:

Huygens's purely arbitrary aaeumpdoo that tike iJUiiii* parts of lie

elementary waves be only these jmtiuaa of them that tooeh the

envelopes of their wave^ronts and attempted to calculate on lie theory
of interference the oscillatory state due to the resultant action of those

waves at any point. These caleaJations not only give only an approxi-

mately rectilinear propagation of light-waves through an homogeneous
medium and a slight bending of the same round edges, but they also

on the assumption of a suitable law for the addon of the elementary
wave with regard to its obliquity (ef. below) rid Hnygens'sp"pl*
of the reflected waves mentioned above.

Determination of Light-Vector by Fresnel s Method. Let us next

calculate by FresneFs method tie oscillatory state at any point duo

to the resultant action of the elementary waves emitted from any

given (spherical) wave-front. Let be the source of disturbance,

ABCP, a sphere of radius r, with centre at 0, the wave-front of

any given wave emitted from that source, and Q a point outside

the given sphere, the point, at which the qeriiiitnij state due to

the resultant action of the elementary waves, emitted from the

numerous (elementary) sources on the given wave-front, at that point,

is sought (ef. Figure 17).

*CL Preston, 77*>ry of Light, 66. fO, ibitL, 58 and 65.
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:-
:ir

stale or figmvrector* at any point or source AT

ware-front can now evidently be represented by the

(moment) 2r* <*-',); ..........................(i)

lor the primary wares treated in Chapters H-IY. this rector or moment
fie in the green ware-front.

a

CLI>rade,ZdbtK* do- ferity 113L



146 ELECTROMAGNETIC THEORY OF LIGHT.

Division of Wave-Front into Zones or Half-Period Elements.

Fresnel now divides the surface of the given sphere or wave-front

up into zones referred to their so-called "
pole

" P or that point on

the surface of the sphere that is nearest to the point of observation

Q (cf. Figure 17). The region (on the surface of the given sphere)

round this pole extending as far as the circle, whose distance

from the point Q is r
2
- r-. + -x, where r

2 denotes the distance of that
'2i

point from the source (cf. Figure 17), is termed the first "zone" or

"half period element"; let us denote the circle bounding this region by

MY The second zone extends from the circle M
l
to that circle Mz

on

the surface of the given sphere, whose distance from Q is r
2

r
1 + \.

Similarly, by describing on the surface of the given sphere circles
o \

M& M4 , etc., whose distances from the point Q, are ^
2
~ r

i
+ ~o~'

r
2
- r

l
+ 2A, etc., we obtain the 3rd, Mh, etc., zones or half-period

elements. These zones are evidently not of the same width, but

they decrease in width, as we recede from the pole P towards the

circle AC (cf. Figure 17), from which circle they increase in width,

as we approach the point B
;
AC is here that circle on the surface

of the given sphere, for which the vectors from the point Q are

tangents to the same, and B the point diametrically opposite the

pole P.

Determination of Area of any Zone. Let us now consider the

action of the elementary waves emitted from any zone, for example
the second, at the point Q. For this purpose we divide the given
zone up into an infinite number of concentric circular zones or zonal

elements of infinitesimal width
;

let this width be so chosen that,

if p denote the distance from the point Q to any circle M' forming
the boundary between any two such zonal elements, the next such

bounding circle M" be taken at the distance p + dp from Q ;
let

denote the angle the vector OM' makes with the vector OP at

.and 6 + dO the angle between the vectors OM" and OP (cf. Figure 17).

The area do of the zonal element M'M" is evidently

do = 2^ sin Q^0 =2^ sin BdB. ... (2)

The following analytic relation now holds between the quantities

/>,
rv r

2,
and <9 :

pa^s+r,*-. 2^0080; (3)

which differentiated gives the following relation between the differ-

entials dp and dO :

pdp = ?-
1
r
2
sin dO (4)
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By this formula we can write the expression (2) for the area do,

do=2ir
r
-pdp................................. (5)
?
2

Expression for the Light-Vector. We have seen above that the

light-vector s at any point M can be represented by the expression

a 27T
8 =

r
1

sm
T^-i'i)'

The light-vector s' at an external point Q due to the action of the

elementary wave emitted from any such source M on the given wave-

front would now be inversely proportional to the distance of the point

Q from that source ;
it would also be a function of the obliquity

or the angle <f> between the normal to the given wave-front at the

point M and the vector from that element to the point Q (cf.

Figure 17). The light-vector s' at the external point Q due to the

action of the elementary wave emitted from the source M could,

therefore, be represented by the expression

where /(</>) expresses the law of variation of s' with regard to the

obliquity <f>.

Light-Vector produced by Elementary Waves of any Zonal Element.

The light-vector at Q due to the action of the waves emitted from

all the points or elementary sources on any zonal element, for example

M'M", is now assumed (cf. p. 164) to be proportional to the number

of those sources, that is, to the area do of that zonal element; if

we denote that vector by dS', we should thus have

sin (y-(r1
+

/o)]^, ............... (7)

or, on replacing do by its value (5),

dS' =
27ra&^-

sin ^ [vt
-

(i\ + p)] dp.............. (7A)

Laws of Obliquity; Natural Law. The light-vector s' at an

external point evidently depends upon the law of variation of the

light-vector over the wave-front of the elementary wave, that is,

its law of variation with regard to the angle the vector from the

source (M) of the elementary wave to any wave-front element of

the same makes with the normal to the wave-front ^proper at that

source. It is now natural to assume that this light-vector vanishes at

all points behind the wave-front proper; that is, we suppose each

elementary source (M) to emit only a hemispherical wave, that in
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front of the wave-front proper (cf. Figure 17), and we thus exclude all

reflected waves (cf. p. 144) from the medium. Moreover, it is natural

to assume that the law of variation of the light-vector over this hemi-

sphere be according to the cosine of the obliquity or the angle (j>

between the vector from the source (M } to the given element and

the normal to the wave-front proper at that source, the vector thus

varying from zero at the base of the hemisphere or equator to a

maximum at its pole. Since now the light-vector s' at an external

point Q is determined by the action of that wave-element of the

elementary wave in question that passes through that point, it would

thus be proportional to the cosine of the obliquity < of the given
element. Let us express this law, which we shall designate as the
" Natural Law of Obliquity," in the form

s' proportional to cos
</> =/(<) (8)

Stokes's Law of Obliquity. Sir G. G. Stokes* has now found

that the light-vector s' at an external point varies as 1 + cos <
;

let

us express this law in the form

s' proportional to
(
1 + cos <) =/(<) (9 )

/(<) becomes a maximum, 2, for the elementary wave emitted from

the pole P and decreases in value, as we recede from the pole, assuming
the value unity for the waves emitted from the circle (AC), for which

the vectors from the external point (Q) are tangent to the wave-front

proper (ABCP), towards the point B diametrically opposite the pole P,

at which point /(<) vanishes (cf. also p. 175). According to this law

of Stokes the wave-front of the elementary wave must evidently be

regarded as a complete sphere and not as an hemisphere, as assumed

above, and hence the presence of reflected waves granted.

Laws of Obliquity in Terms of p. The obliquity <f>
can now be

expressed as a function of the given quantities ^ and r
2
and the

variable p (cf. Ex. 1). We could thus express the law of variation

of the light-vector s' with regard to
</>

in the form

s' proportional to F(rv r
2 , />),

or, for given r
l
and r

2,

s' proportional to F(p) (

Throughout any given zone Mn
-Mn+l p increases from

yi X,

pn = T2- r
i + -f)-

for tne circle Mn

71+1
to /+! = *'

2
- r

i + 2~
A. for the circle Mn+v

*"0n the Dynamical Theory of Diffraction," Math, and Phys. Papers, v

p. 243.
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that is, it increases by the quantity -=. For light-waves A is now so

small compared with r
t
and r

2
that the function F(p) could be regarded

as approximately constant throughout any zone. In determining the

light-vector $' at an external point Q, dije to the action of the waves

emitted from any zone Mn
-Mn+l or n, we could, therefore, set F(p)

before the sign of integration.

Determination of Light-Vector produced by Elementary Waves

of any Zone. For light-waves the vector Sn
'

due to the action of

the elementary waves emitted from any zone n would, therefore, by
formula (7A), be given by the integral

f
2

2
.

' = 27rft I sin -T-
r
2

\ A
J . . _,

n+i

- cos

ftA il
j
COS (vt

-
?'.,)

COS W7T - COS -^ (^ - 7'
2)

COS (W + 1) 7T I

r
s I

;

A A J

cos '(vt-r.,}..................................... (11)
r
2

A

Light-Vector produced by Elementary Waves of two Consecutive

Zones. Let us now consider the light-vector at an external point Q
due to the mutual action of the elementary waves emitted from two

consecutive zones. It is evident from formula (11) (cf. also formula

(5)) that the waves emitted from the one zone, being opposite in

phase to those emitted from the other, would neutralize each other,*

provided their variation in obliquity could be entirely neglected (cf.

also p. 164). The only effect that could be produced at an external

*The waves emitted from the zonal element included between the vectors

n\ , n\= r.-r + -- and

t the one zone would differ in phase from those emitted from the zonal element

ucluded between the vectors

n + 1 . n + 1. ,

p = r.2
-

ri -\ \ and p + dp r.2 -rl + Q X + dp

of tl.v o'her zone by half a wave-length ;
since now the elements of area included

1
-

".hese two pairs of vectors are the same (cf. formulae (5) and (11)), the

<.\ '.'ii the one zone would neutralize those from the other. Similarly, the

w*v -o-a the next and all following consecutive zonal elements of the one

f .iio. * 1 neutralize those from the corresponding elements of the other zone.
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point would, therefore, be that due to the variation in the (mean)

obliquity between the waves emitted from the one zone and those

emitted from the other (cf. also p. 165). The total resultant effect or

light-vector at an external point would thus be given by a sum of

such effects ^(S^ + S^^} arising from the variations in obliquity

between the waves emitted from consecutive zones. Let us deter-

mine the expression for such an effect.

For two consecutive zones, n and n + 1, the law of variation of s

with regard to obliquity could be expressed by the functions

nX\ , / n+l
-^-] and

(cf. formula (10)) or for light-waves, since A is then infinitely small

compared with r
2
- r

lt approximately by the functions

n\\ T. / n\\ 1. ,.. / n\\ ,,~.- r
i + and Frz- r

i + - + XI< r2-^ + , ( *

where F' denotes the derivative of F with regard to A.

By formula (11), the resultant effect or light-vector, S'n + S'n+l ,
due

to the mutual action of the elementary waves emitted from any two

consecutive zones n and n + 1 could thus be written

(13)

Expression for Total Effect or Light-Vector. The resultant effect

or light-vector (13) is now small, proportional to A, compared with

that (11) produced by the waves emitted from either zone. It

follows, moreover, from formula (11) that the light-vector Sn due

to the action of the elementary waves emitted from any zone differs

in sign from that S'n+l due to the action of the waves from the

adjacent zone. If we denote the absolute value of any light-vector

Sn
'

by SM the total resultant effect or light-vector S at an external

point Q due to the mutual action at that point of all the elementary

waves emitted from any (spherical) wave-front ABCP (cf. Figure 17)

will, by the principle of superposition, be given by the series

(cf. formula (11)), where m+1 is the number of zones, into which

the given wave-front can be divided.
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Whatever law of variation of light-vector with regard to obliquity

be assumed, it must evidently be such that the greater the obliquity

the smaller the light-vector; since now the variation of Sn is alone

due to a variation of the obliquity (cf. p. 150), it would follow

that, as n increased, Sn would decrease in value
;
that is

^ $+r
For m even, m = 2/c, where K is an integer, the above series (14) for S

can evidently be written

.(15)

Relation between the Light-Vectors of Consecutive Zones. Let

us now examine any bracket term

of the series (15) ;
here n must evidently be taken odd.

By formula (13), we have

- S + S l
= ff +y I

= - 1
M F r - + cos

which for n odd becomes

and similarly,

2aA.r_/ wX\ I,/ nA.\~ 27T
cos

which for n odd becomes

Add these two expressions, and we have

5,.!- 25^ + ^-1 = ............................ (16)

In obtaining this relation between the S's, we have rejected only

terms of the third and higher orders of magnitude in A, those arising

from the development of the function F with regard to that quantity

(cf. formula (12)); the given expression between the S's can, there-

fore, differ from zero by a quantity of only the third or higher orders

of magnitude in X, that is, by a quantity, whose order of magnitude
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in A, is at least two higher than that of the expression (11) for Sn .

It is evident that such quantities can be rejected, when compared
with Sn ($ ),

even when the number of terms of the given series

is of the same order of magnitude as
^.

The series (15) thus

reduces to the simple expression

SQ S^
2
+

2

Similarly, it is easy to show, when m is odd, that the series (14)

for S reduces to

S==\_rn
2 2

(cf. Ex. 2 at end of chapter).

The light-vector S at an external point (Q) would thus be given

by the expression

.* ............................... (17)

Replace here S and Sm by their values from formula (11), and

we have

-r
1 + cosV-r2),

...... (17A)

where m + 1 is the number of zones that contribute to the total effect

at the given point.

Laws of Obliquity. To evaluate the expression (17A) for S, we

must now know the law of variation of the light-vector s' with regard

to the obliquity <, that is, the function F(p) (cf. formula (10)). For

Stokes's law (cf. formula (9)), we find (cf. Ex. 1 at end of chapter)

We have seen on p. 148 that this law gives reflected waves. That

no reflected waves may appear, it is evident that the law of variation

of the light-vector s' with regard to the obliquity <j>
must be such

that the elementary waves emitted from the zones, for which
</>

is

greater than 90, will have no effect at the point in question. On the

other hand, the law sought must evidently express the empirical fact

that the larger </>,
between and 90, the smaller the light-vector s'.

The simplest such law is now the natural law proposed on p. 148,

namely,
s' proportional to cos

<f> (0 ^ < ^ 90)

* For another proof of this formula see : A. Schuster, Philosophical Magazine,

vol. 31, p. 85.
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(cf. formula (8)); which gives the following value for the function F(p):

(cf. Ex. 1 at end of chapter).

Total Light-Vector for Natural Law. On the assumption of the

natural law (ISA) the last term of the expression (17A) for S evidently

vanishes, and S is then given by the expression

S-coa-r,)............................ (19)

Total Light-Vector for Stokes's Law. On the assumption of

Stokes's law (18) S is evidently given by the expression

*^(vt-rJ ........................... (20)

Approximately Eectilinear Propagation of Light-Waves. Effect of

Small Circular Screen at Pole: Bending of Waves. On the assumption
of either of the above laws (18) or (18A) the following relation

evidently holds between the total light-vector S and the light-vector S

due to the action of the elementary waves emitted from the central

zone only :

S=f ................................... (21)

(cf. formula (17)); that is, the total light-vector S at an external

point Q could be conceived as produced alone by the action of the

elementary waves emitted from the first half of the central zone, or

the effective portion of the given wave-front could be regarded as

confined to a very small area (of the dimensions of the wave-length A)

around the pole P ;
in other words, the light received at Q could be

conceived as propagated from the source in approximately straight

lines. This approximately rectilinear propagation of light is evidently

a consequence of the extremely short wave-length of the light waves
;

for waves of long wave-length, as the electromagnetic waves proper

(Hertzian) or those of sound, the propagation would deviate con-

siderably from the rectilinear. If the first half of the central zone

be intercepted at the pole P by an opaque screen, the elementary

waves emitted from the other portions of the given wave-front would

have apparently no effect at the point Q, that is, that point would

receive no light. This conclusion is now neither correct nor is it

confirmed by experiment. If we screen off the first half of the central

zone by means of a small circular screen placed at P, the first zone

will then extend from the edge of that screen to the circle on the
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a \

given wave-front, whose distance from the point Q is r
2
- r

x + -j- ;

the second zone from this circle to that whose distance from Q is

5A,
?*
2
-

/i + ,
etc. the total effect at the point Q, therefore, would not

be zero, as concluded above, but it would be given by a series similar

to that (14) already found, which, like the latter, would assume most
q

approximately the value
-^,

where ^ denotes the light-vector produced

by the elementary waves emitted from the (first) zone bounded by the

edge of the screen and the circle on the given wave-front, whose
3A

distance from the point Q is r
2
-r

1
+

-^-.
The point Q or the line PQ

would, therefore, be not dark but illuminated, and evidently (cf.
for-

mulae (11) and (18A)) only to an infinitesimally less degree than in the

case, where no obstacle were placed in the course of the waves
;
this

would be interpreted according to the Emission Theory as a bending of

the waves around the edge of the screen or obstacles placed in their

course, a result that is confirmed by experiment. If the screen be

large, of dimensions not of the wave-length but of the distance of the

point Q from the screen, then the effect at that point would be small

compared with that, where no obstacle were placed in the course of

the waves (cf. formula (ISA)).

Effect of Small Screen of Irregular Contour : Great Diminution in

Intensity. A case, where the total effect or light-vector at the point

Q will be found to be small compared with that where no obstacle

is placed in the course of the waves, is that where the screen is

comparatively large large compared with A.
2 and either not exactly

circular or not placed with its centre at the pole P ;
these conditions

would evidently correspond somewhat better to the actual facts of

experiment than those assumed above. To determine the resultant

effect or light-vector at the point Q, we imagine the edge or contour

of the given screen replaced by a great (infinite) number of very

(infinitely) short circular arcs of varying radius with common centre

at the pole P. The light-vector dS produced by the elementary
waves emitted from that unscreened portion of the given wave-front

that lies between any two such consecutive vectors extended will

then, by formula (19), be given by the expression

where d^ denotes the angle subtended at the pole P by those two

vectors and p the radius of the corresponding circular arc (given

portion of edge of screen).
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Similarly, the light-vector dS, to which the unscreened portion of

the next circular sector of the given wave-front would give rise, will

be given by
70 dS9 a\ deb* %7r rds= =

2?
cosT !>'

'
<
r
i + P*)! etc -

The total effect or light-vector S at the point Q produced by the

action of the elementary waves emitted from the entire unscreened

portion of the given wave-front will, therefore, be given by the sum

of all the light-vectors dS =^; we thus have

.(22)

where /c denotes the number of circular arcs, by which the contour

of the given screen has been replaced.

Since now the contour of the given screen is assumed to vary only

very little from that of an exact circle with centre at P, p19 />2 ,
. . . will

vary only very little from one another, and they may thus be re-

placed by any mean value of the same, /o,
in the coefficients of the cosines

in the expression (22) for S, but they cannot evidently be replaced by

any such mean value in the arguments of those cosines, since ^ + pv

i\ + pv ... are divided here by the small quantity A. The above

expression (22) for S can thus be written most approximately

7 . r . , ,-. -. .

9 ^ C ST^ "^ + ftM + d^ COS
A

(22A)
x

[vt
-

(r1 + p2)] + ... + f% cos -
[vt

-
(rl + pK )] Y

The smallest deviations in the contour of the given screen from

the exact circle with centre at P would now, in general, at least for

light-waves, correspond to variations of several waves-lengths in the

quantities pv p2 ..., and hence to a great irregularity in the values

assumed by the different cosines in this expression (22A) for S
;
some

would be positive, others negative, and others vanish entirely. The

value assumed by the series in the largest pair of brackets would,

therefore, be small here compared with that of the series for the

case, where the p's and hence each term of the series have one and

the same value. The total effect or light-vector S at the point Q
screened off from the source by a small (of the dimensions of the

millimetre) opaque body would, in general (for light-waves), thus be

small compared with the natural light-vector; that is, the points
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directly behind the screen or the line PQ would be illuminated only

weakly.
Effect of Large Screen with Small Circular Aperture at Pole :

Maxima and Minima of Intensity. If we replace the small opaque
screen employed on p. 153 by a large one with a small circular aperture
at P, we obtain quite different results from those above for the quasi-

complementary case. If the given aperture admit the waves of only
the first half of the central zone, the light-vector at Q will evidently

be exactly the same as when the screen is removed, that is, it will

be the normal or natural light-vector or intensity. If the aperture be

increased to admit the waves of the whole central zone only, the light-

vector will be double the natural light-vector or the intensity four

times the natural one. If the aperture admit all the waves from the

central and first zones only, the resultant light-vector and hence the

intensity at Q will approximately vanish. As we increase the opening
in the screen, the resultant intensity at P will thus vary periodically

between maxima and minima, but these maxima and minima will

evidently become less and less pronounced, so that after the opening
has attained a certain size, there will be no appreciable variation in

the illumination at Q. These results, all of which are also confirmed

by experiment, differ materially from those obtained by means of a

small opaque screen at the pole P; here the intensity varies periodically

between maxima and minima, as the aperture is increased in size,

approaching a given uniform intensity, after the aperture has attained

a certain size, whereas in the quasi complementary case the intensity

decreased from a given finite maximum continuously but rapidly to a

small value, as the dimensions of the screen approached those of the

distance (squared) of the point Q from the same. Instead of varying
the size of the small intercepting screen or that of the aperture in the

large screen, we can evidently obtain the same results by taking the

point of observation Q at different points on the line PQ.

Effect of Large Screen with Small Irregular Aperture : Natural

Intensity. When the aperture in the intercepting screen is not exactly

circular (with respect to pole), it is evident from considerations similar

to those on the preceding page that the maxima and minima of

intensity at the point Q will be much less marked than when the

aperture is exactly circular (with respect to pole) ;
the resultant

intensity will -then approach one and the same, the natural intensity,

for all sizes of aperture (cf. Ex. 3 at end of chapter). For the quasi-

complementary case, where the aperture was replaced by a small

screen, we found only a weak illumination along the line PQ.

The Electromagnetic Vector. The above formulae, from (11) on,
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have been deduced on the assumption that the wave-length A were very

(infinitely) small compared with the distances r
l
and r

2 ; they would

thus hold for light-waves but not for electromagnetic waves proper,

as the Hertzian. Let us now examine the resultant effect or electro-

magnetic vector at an external point Q (cf . Figure 1 7) due to the action

of -the elementary waves emitted from any given wave-front ABCP of

a system of (spherical) waves of long wave-length, as the electromagnetic

waves proper.

Determination of Electromagnetic Vector produced by Elementary

Waves from any Zone. For waves of long wave-length the electro-

magnetic vector Sn
e

due to the action of the elementary waves emitted

from any zone n would evidently be given by the integral

ny-^+p)]^ ................. (23)

(cf. formulae (7A) and (10)), where F(p) cannot be regarded as constant

throughout the given zone, as on p. 149, and has thus been retained

under the sign of integration. In order to evaluate this integral we

must now assume some law of variation for the electromagnetic vector

s' with regard to the obliquity <, that is, we must know the function

F(p) (cf. p. 152). Let us assume here the natural law of obliquity,

expressed by formula (8) or (ISA).

Replace F(p) by its value (ISA) in the expression (23) for Sn
'

t
and

we have

TTd f . 27T r

.(24)

which we write S'n = AS\ + BS'
2 , (24A)

where A= - 1-
,
B=

, (25)

S\ =|sinw-^, S'9 =|sino>p^p, (26)1

J p
*n

J

where w =
~jr\?t

"
(
r
i
+ /)] (26A)

Let us first evaluate the integral S\n
. By the reduction-formulae

fsin to dp X (W(cos w) _ A coso> 1 _^ fcoso^p

J^^"
=
2^rJ""^~ ~2^~ r̂

K2irJ p-
+1

fcosw^p Af^(sinw) A sin w 1 Afsinwdp
and = -

;
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the repeated integration by parts of the given integral will evidently

lead to the following series for the same :

A cos co A sn <uA
J

A sin co 1 A ( A cos co 1 A
J

A sin

2ir[ 2^ ~^~~2 2^{2^~^
+

3 27r{*"2ir p*

1 A
J
A cos co 1 A

J
A sin co 1 A

J
A cos w ^

11

A cos co / A Y sin co 1 / A \ s cos co 1 / A Y sin co

1 / A Y cos co 1 / A Y sin co 1 / A \ 7 cos co .

A \ 2 A \ 4

rA_i + ^r( ~ - + ... Sin CO,
/ ^\\ \ /im /

or, since

and
X2 X^ X6- +_-_

AT A .A.lA /A \ /1>r v

5 =- cos- cos co-sm - sin co =- cos -^ + co), ...(27)xw
2irp [_ '2irp 2irp ZiTrp \27rp /

where the limits of integration are ^
2
~ r

i + "^~
an(^ r2~ r

i"^ 9~~^-

Replace here p by these limits, and we have

A A 2

(27A)

\

J

x cos r x 2?r / , ^+ i x\l

-7
-

^Trr +Tr-^-^-A
)

lf
r
(
fl- f>l+-J-xJ J

We next evaluate the integral S'
2 -,

we evidently have

r A2 A
'

2
= lpsinco^p = j-^sinco + pcos co, (28)

where the limits of integration are, as above, r
2
-r

l
+ -^ and

r
2
- r

l -i -. A. On replacing here p by these limits, we have
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A2 f . 27r / . n\\ 9,

ft + 1 2?r / Ti + 1
cos -r I vt TO T-

159

(28A)

and, on developing these sines and cosines as functions, sines and

d nir or
(/i + l)?r respectively,

9 ~~n
- sin ^- (^

- r
2)
cos (% + !)TT

cosines, of the angles ^-(vt
- r

2)
and mr or (n + I)ir respectively,A

-
TO cos mr

-7T- cos -TT- (vt
- r ) cos TiTT

- (r2 -r1 + - A
J
cos

-^ (^
- r

2)
cos (w + 1) TT

,. (28B)

Determination of Total Effect or Electromagnetic Vector. The

total effect or electromagnetic vector S produced at the point Q by
the elementary waves emitted from the whole effective wave-front

APC (cf. Fig. 17) is now given by the expression

S = A(S'
la
+ S'

li
+ S'h+ ...S'

lm)
+ B(S',o

+ S^ + S^+...8',J (29)

{cf. formulae (24A)).

On replacing the /S^'s of the first series of this expression by their

values (2 7A), we find, since the first term of the given expression for

any S\ and the second or last term of the corresponding expression

for the preceding S"
1} S\ _ , evidently cancel,

S\ +S\ +S\ +...S\xo *i 12 lm

cos

2irr-r

xcos

, .-.(30)

where e<l (cf. below).

Similarly, the first and third terms of the expression (28A) for

any 8'^ and the second and fourth (last) terms of the corresponding
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expression for the preceding /S"
2 ,

S'
2 ,

will evidently cancel, so that

the second series in the expression (29) for S will reduce to

X'2

COS

A2

2ir
x cos -:-

A)-A

m + e

, ...(31)

where e< 1 .

The given wave-front between < = and < = 90 could, in general,

be divided up into only m whole zones or half period elements
;
that is,

the m + 1 zone would be not a whole zone but only part of one, that

namely extending from the circle on the given wave-front, whose

distance from the point Q is

to that circle, for which the vectors p from Q are tangent to that wave-

front, that is, for which < = 90. The distance p of any point on the

latter circle from Q is evidently

rT^Y*; .....................(32)

by which the quantity e, which is smaller than unity, is determined

as a function of the given quantities r
2 ,

rv m, and A. The particular

case, where the given wave-front could be divided up into exactly

m + 1 whole zones, would evidently be characterized by the following

conditional relation between r
2,

rv m, and A :

(32A)

Replace
m+e A by its value from formula (32) in the expressions

(30) and (31) for the two series in formula (29), and we find, by the

latter and formulae (25), the following expression for S :

A f A__ 27T , n

x r A V,/ ,^} .

x
. . , . ,-

rj + (r2
-
rj cos -(vt

- r
2)
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which we write in the two terms

a\ (, r A.

5 =w\ (r* + ri)cos
l>fa-*i)

+

-
(r2

-
1\) cos -j-{*

-
r%)

~ ^ sin -T-(^
-

^2)
f

- \/r2
2 -

r^ cos -(^ - r
t
-

,...(33)

Expression for Electromagnetic Vector; reduces to Light-Vector

for very small values of X. The first term of the expression (33)

represents the residual electromagnetic vector produced at the point Q

by the elementary waves emitted from the central zone, whose action

at that point has not been annulled by the action of the waves emitted

from the next (first) zone, and the second or last term the residual

electromagnetic vector produced by the elementary waves emitted from

the m+lst or last zone, whose action has not been annulled by the

action of the waves emitted from the rath zone
;
the other elementary

waves, from the first to the rath zone, produce no effect at the point Q.

It is now easy to show that for light-waves the expression (33) reduces

to

aX 27T, .

(cf. Ex. 6 at end of chapter), which is the expression for the light-

vector of light-waves (cf. formula (19)). The expression (33) for waves

of long wave-length thus differs from that for light-waves in the

appearance of terms of the second and higher orders of magnitude in A.

Approximate Expression for Electromagnetic Vector A small.

Let us examine the expression (33) for S, when A is small but not

very (infinitely) small in comparison to the distances r
2
and r

lt
that is,

let us retain terms of only the first, second and third orders of

magnitude in A in the given expression for S. On developing the

cosines of the first terms in the two pairs of largest brackets in

expression (33) as functions, sines and cosines, of the single angles,

and replacing the sines and cosines of the angles

A A
_ and

by the trigonometric series for the same, we can write the expression

sought
L
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, \ / \ / , \m( - f -
<
r -n)cos(^ -

r,)
- i

sin ^(0 - r, - \Jr^ -r,'2 )
-r

1
2 A

+ TT^-T, VfV - r,- cos -^-(vt -r,-

(33A)

Examination of Approximate Expression for Electromagnetic

Vector; Behaviour of same compared with that of Light-Vector.

The first three terms of the expression (33A) represent the residual

electromagnetic vector produced at the point Q by the elementary

waves emitted from the central zone and the last two terms the

residual vector due to the waves emitted from the m + 1st or last zone

(cf. above). The former is represented by terms of the first, second, and

third orders of magnitude in A and the latter by such of the second

and third orders only. The total effect or electromagnetic vector at Q

could, therefore, be regarded as produced chiefly by the action of the

waves emitted from the central zone, except for (very) large values

of A, that is, the maximum deviations in the paths of propagation of

the given waves from the rectilinear would be approximately of the

dimensions of the central zone. For values of A, for which the terms

of the second order of magnitude in A of the given expression (33A)

contribute materially to the total electromagnetic vector at Q,

that vector would have to be regarded as the sum of two such,

that produced by the waves emitted from the central zone, and that

due to those emitted from the m + lst or last zone; and here the

former wTould be given not alone by the first term of expression (33A),

the light -ector proper, but by the sum of two or more terms contain-

ing A in not only the first but also the second (and third) power ;
at
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the same time the total effect at Q could not be regarded as produced

alone or chiefly by the action of the waves emitted from the central

zone, for the waves from the last zone then contribute materially to

the total effect; in other words the given propagation would then be

said according to the Emission Theory to deviate materially from the

rectilinear. If we intercept the given waves at the pole P by a circular

screen, the effect at Q will evidently diminish only very little, as the

size of the screen is increased, that is, figuratively speaking, there

will be a marked bending of the waves round the edges of obstacles

placed in their course. It is also easy to show (cf. Ex. 7) that slight

deviations in the contour of the intercepting screen from the exact

circle with centre at pole will have little effect at the point Q ;
in this

respect the light-waves and the electromagnetic waves of long wave-

length will differ materially from each other (cf. p. 155). It is also

possible to show (cf. Ex. 8) that the electromagnetic vector, like the light-

vector, will pass through maxima and minima, as the circular aperture

in the large intercepting screen is increased in size
;
but these maxima

and minima of intensity will not be so pronounced as those produced

by light-waves on account of the appearance of "terms of the second

and higher orders of magnitude in A. these vanish for light waves

which will tend to diminish the maxima and to increase the minima

(cf. Ex. 8 at end of chapter). For reasons similar to those stated in

Ex. 7 at end of chapter, it is evident that slight deviations in the

contour of the aperture from the exact circle with centre at pole

will have little (infinitesimal) effect on the value assumed by the

given electromagnetic vector.

Shortcomings of Huygens's Principle as postulated by Fresnel
;

Necessary Modifications. Another Method. Although the (approxi-

mately) rectilinear propagation of light (electromagnetic) waves through

homogeneous media, the apparent bending of the same around the

edges of obstacles placed in their course, and their behaviour, as

confirmed by experiment, where they are intercepted by small screens

or pass through small apertures in large opaque screens, can be deduced

from Huygens's principle as modified by Fresnel, there are several

serious shortcomings embodied in the same. The light-vector S at

an external point (Q) is evidently

(34)

and not $=~ cos ~(d - r9),

as found above (cf. formula (19)); that is, Fresnel's method gives not
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only a false phase for the light-vector at Q, one that differs from the

actual phase by quarter of a wave length, but also a false amplitude,
one that is A times the actual amplitude. We observe that the

expression (33A) found for the electromagnetic vector at Q differs

from the given one (34) still more than that (19) which has been

deduced for the light-vector does. How are now these incorrect

expressions for the vectors to be accounted for 1 Let us examine the

above development, as postulated by Fresnel, in detail. The light-

vector s' at the point Q due to the action of the elementary waves

emitted from any source M on the wave-front ABCP (cf. Fig. 17) was,

by formula (6),

and the light-vector dS' at Q due to the action of all the elementary
waves emitted from any zonal element was then assumed to be s' times

the area do of that element. This assumption is now evidently not

justified. The elementary waves emitted from any such zonal element

may be assumed to have one and the same phase, but not one and the

same direction or plane of oscillation
; take, for example, the primary

waves treated in Chapters II. and III. or any system of primary waves,

that is, waves whose oscillations are taking place at right angles to

their directions of propagation, whereby their directions or paths of

oscillation (in planes of oscillation) may change thousands of times per
second (cf. p. 72) ;

two such waves emitted from different parts of

any zonal element will now have different planes of oscillation at

the point Q, so that the resultant effect at Q would not be given by
the sum of the single effects or light-vectors, without any reference

to the nature of the same, as assumed above, but it would have to be

obtained from the superposition of the single effects, according to

the doctrine of interference. The effect at Q due to the action of all

the elementary waves emitted from any zonal element would, therefore,

be not s'do, as assumed by Fresnel, 'but that obtained from the super-

position of all the single effects at Q, according to the doctrine of

interference, and the latter would evidently be less than s'do, since

many of the different component moments both in the plane at right

angles to the line OQ and along that line would neutralize one another

or interfere destructively.

Again, on p. 149, it is taken for granted that the only effect that could

be produced at the point Q due to the joint action of the elementary
waves emitted from two consecutive zones would be that due to the

variation in the mean obliquity between the waves emitted from the one

zone and those emitted from the other
;
this assumption is also incorrect,



HUYGENS'S PRINCIPLE. 165

for there will evidently be a certain effect produced at the point Q by
the variation in the mean angle, which the planes of oscillation of the

waves from the one zone and those from the other make with the line

OQ. An attempt to calculate the total light (electromagnetic) vector

at Q on the introduction of this and the foregoing modifications would

evidently prove fruitless, for, in the first place, we really know nothing
about the behaviour (direction or path of oscillation, etc.) of the

light (electromagnetic) vector along the surface of the given wave-

front we could only treat given particular cases as the problems
of Chapters II. and III. and secondly, if we did, the actual calcula-

tions would present unsurmountable difficulties. For this reason we

shall abandon the above method of treatment of Huygens's principle

and seek to confirm the same from an entirely different standpoint,

where no knowledge of the behaviour of the light (electromagnetic)

vector throughout the region in question will be required, except that

it be a particular integral of the general equation of wave-motion;
this will enable us to treat not only light-waves and electromagnetic

waves, whose directions of oscillation are always at right angles to

their directions of propagation, but apparently electromagnetic waves, as

the secondary, whose planes of oscillation are not at right angles to their

directions of propagation ;
the rigorous treatment of the latter accord-

ing to Fresnel's method would evidently present even more serious

difficulties than those encountered in the treatment of the former.

Rigorous Proof of Huygens's Principle ;
Derivation of Formula for

Function at any Point in Terms of Surface and Volume-Integrals of same

throughout any Closed Region. In the rigorous proof of Huygens's

principle we shall start from a formula between the volume-integral

of a given function of a certain function U and r and the surface-

integral of another function of the same (see below). Let us first

derive the formula in question. Let the function U contain x, y, z and

also T explicitly, where r denotes the distance of the point in question

from the origin of the coordinates x, ij, z, that is, r2 = x2 + if + z2
;

-~\ J"T --\ TT *~\ TT "~\ TT

further, let -, ,
or -- denote the change in U due alone

3z cty dz 3r

to a change in the variable x, y, z or r respectively, whereby the three

other variables contained in U shall remain constant; and, lastly, let

dU dU dU T IT . TT -i -i

-j-, -=- or denote the change in U due to the increment dx, dy,

or dz along the x, y or 2-axis respectively, whereby r will evidently

undergo a change. We have then

dU_-dU 3Z73r_9Z7 dUx_3U 3

dx
~

-dx
+
~& Vx~ -dx

+
dr r~ Vx

+
3
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or, if we write here -^ in place of U.
r ^x e

j-(- -^ )
=

j^-(
~ -~ 1 + ~-( -

75 ) cos(r, x},
dx\r 3r J dx\r 9r / or\f ^x J

or, since r is to be regarded as constant by the differentiation
,

dx\r

and similarly

o -^~ cos
1

cos (r, x)v ;

1 WU 1 -dU
,

. l^U .

x- ^^ - -5 -~- cos (f, y) + - cos (r, y)r oy
2 r2 oy r oroy

, . , . ^
,

.

and -j-i
-

-^
= -

-^-9
-

-o -^- cos
(r, z) + -

^-^- cos (r, 0)
ffo\r 30 / r 3a^ r2 ?)z r^drZz '

J

....(35)

Let now -= denote the change in U due to the increment dr along

the vector r
;
the total change in U due to this increment will evidently

consist of four (partial) changes, that in U due alone to the change in

r and those due alone to the changes in x, y and z singly ;
that is, the

total change in U will evidently be given by the expression

-r- = -^- + -^ cos (r, ) + --- cos (r, y) + -^- cos (r, z) -, (36)
dr or ox oy oz

if we write here in place of U. we have
3r

dfdU\ . . ,... f . ....
cos (r, *) + ^-^- cos (r, y) + ^-^- cos

(r, ). (3 < )

Add the three equations (35), and we have

d/lc^7\ ^/Ic^A A^i 3^- 1

dx\r 3x~)
+
dy\r ty)

+
dz\r dz )

~
r

\--dU VU
C S

cos (r, x) + ^^^ cos (r, y) +v ; v J/+ -
r

\

which, by formulae (36) and (37), can be written

*-fi?E\ ^L(l_^\ ^(\ ?>J[L\-
dx\r -dx)

+
dy\r-dy)

+
dz\r ^z )~ r\

_?)U\ IVd (dU\

J]r
' ^

J

,

cos (r,
2;

2 dr r2 J
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1 d fdU\ I'dU Id/ 3Z7\
or, since -

j-f -^ + 9 ^ = -
r dr \ 9r / r2 3r r2 dr\

,

J__ _ _

~r\-dx* Vf Vs* c>r
2 r2 i

Multiply both sides of this equation by dxdydz and integrate the

same through the region bounded by any closed surface S, and we have
'

i

d d

. ...(38)

, . . /I 3J7\ /I 3^7\ , /I 3Z7
Let us now assume that the functions -

-^ LI- ^ and
(

- ^r-
\r Ba; /' \r ?>y ) \r dz

and their derivatives with regard to x, y, z be single-valued, finite and

continuous throughout the region bounded by the surface S. We can

then integrate the different terms of the first integral of formula

(38) by parts, the first with regard to x, the second to y and the

third to z, and we have

777 ff 7 7 /I W\
dxdi/dz = 1 1 dydz

- ^ ),

JJ \r ^1
the limits of integration to be taken at those values av 2,

a
z

. . . of x

on the surface S, where the cylindrical element dydz (as base) parallel to

the aj-axis enters and leaves the given region (cf . the annexed figure) ;

we thus have

dydz

FIG. 18.

*This is evidently the partial differential.
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If ds denotes the area of the surface S intercepted by the cylindrical

element dydz at the different points a
lt
a
2 ,
a
s , ..., then

dxdy = ds! cos (nlt x)= - ds
2
cos (w2 , x)

=*= ds
B
cos (n3, x) . . .

(cf. Fig. 1 8) ; and the given integral can be written

fffrf/1 SZA, , , fl
-T-I

-
-5- }dxdydz= -

\

JJJfl&c\f 3z / }r

,= -
\- ^- cos(w, )&.
}r c3z

Similarly, the other two volume-integrals of the left-hand member
of formula (38) can be replaced by surface-integrals, namely,

- cos
r y

SZ _ _ fl -dU

~jr 3^
C

Formula (38) can thus be written

- I- T^ cos(n, x} + ^r cos (n. y} + ^r-cos(n, z) Ids

J r [_ 9z 3^ 30

dxdydz-m
m ^

(39)

dxdydz
I I I /

~
VUI \ \JI /

or, since

~ cos (w, ic)
+ -~ cos (w, y) + -~ cos (n, 0)

=
-^

,

where denotes the change in U produced alone by the increments

in the variables x, y, z as we advance the distance dn along the inner

normal to the surface S that is, T is to be regarded here as constant

the formula sought (cf. above).

In formula (40) we must now discriminate between the two cases :

I. The region of integration, enclosed by the surface S, contains the

origin of our system of coordinates x, y, z\ in which case the given

formulae would not hold in their above form, since 1/r then becomes

infinite at the origin ;
and

II. The origin of our system of coordinates lies outside the region

of integration.
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Case I. : The Point Q lies inside the Surface S. In order to be

able to apply formula (40) to this case, we must evidently exclude the

origin of our system of coordinates from the region of integration ;

for this purpose we describe a sphere of very small radius p with

centre at origin around the same. The region of integration

will then be bounded by the given outer surface S and the surface

of the small sphere, as inner surface. The value assumed by the first

or surface-integral of formula (40) on the surface of the given sphere
will now be very (infinitely) small, since the area of that surface is

proportional to p
2

,
whereas l//o alone appears in the expression to be

integrated ;
the value assumed by this integral on the surface of the

sphere may, therefore, be neglected compared with that assumed by
the same on the surface S. Similarly, since the volume of the given

sphere is proportional to
/o

3 and the expression under the integration-

signs of the first volume-integral of formula (40) contains p in the

first power only in the denominator, the value assumed by the given

integral throughout that sphere will be very (infinitely) small com-

pared with that assumed by the same throughout the given region ;

we could, therefore, extend the given integration throughout the whole

region bounded by the surface S instead of throughout the given

region or that bounded by S, as outer surface, and the surface of the

given sphere, as inner surface, without effecting the value sought.

Lastly, let us examine the last integral of formula (40) ;
for this

purpose we imagine the given region divided up into elements formed

by the intersections of cones with apices of solid angular aperture d<f>

at the origin and of spheres with common centre at the origin and

whose radii differ from one another by dr. The volume of any
such element will evidently be

Replace the rectangular volume-element dxdydz by this new one in

the given integral, and we have

'1rrr

))}

j , , ,,,
dxdydz= \d$\ dr-ry ^ dr

...(41)

p

At the lower limit r - becomes infinitely small as p approaches
or

zero and can thus be rejected, whereas, as we know from the theory of

the potential,

(42)
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where U denotes the value of U at the centre of the given sphere
or origin.

At the upper limit, the surface S, the following relation will

evidently hold between the surface-element fidfy and the surface-

element ds of the surface S, intercepted by the cone d(f> :

rtd(j> = -ds cos (n, r),

wThere n denotes the inner normal to the surface.

At the upper limit the given integral can thus be written

where the integration is to be extended over the whole surface S.

In the given case formula (40) will thus assume the form

I'dU,

-

\cos(n, r)^(

or

rr / x & /u\ i sen
cos (nt r)^-[} -~

JL '3>'W r3J
,

;

where the surface-integration is to be extended over the whole surface

S only and the volume-integration over the whole region enclosed

by that surface.

Case II. The Point Q lies outside the Surface S. This case differs

from the foregoing in that the origin of our system of coordinates lies

outside the region of integration, so that the considerations pertaining

to the sphere employed in the latter will not have to be introduced

here. In the given case the third or last integral of formula (40)

can now be brought into another form
;

for this purpose we first

replace there the volume element dxdydz by r*d<f>dr introduced above,

and we have

l d /I 3 TT\ 1
, , (V* , ( 3 TT\

-9 j-(~ -or- U\dxdydz= \d$\ dr-^ir -- U]
r2 dr\r Vr / J dr\ Vr J

...(45)

fff

]))
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where re denotes the distance from the origin of the point on the

surface S, at which the cone of solid angular aperture d(f> with apex at

origin enters that surface, and r
t
the distance from origin of the point

on given surface, at which that cone leaves the same.

We next replace the surface-element r2d<j> by its value in terms of

the surface-element ds intercepted on the surface S by the given cone
;

at the point, where this cone enters the surface S, we evidently have

re
2
d<f>

= + dsecos(n e , r),

and at that, where it leaves the same,

r,
2
d<j>

= -ds
lcos(n l, ?),

where n denotes the inner normal to surface.

We can then write the integral (45)

Iff

I d (\ ^U TT , , , ,
-

j-\
~ o Z7

] dxdydz
r2 dr\r ^r ' y

u

I
= -

f
^cosK r) [|(f)]r<

-
fcfo.C08(^

r) [|(f
these last two integrals are evidently equivalent to the single integral

where the integration is to be extended over the whole surface S.

In case II. formula (40) will thus assume the form

(T

JL

,

ds

(((l/^U 92 Z7 &U &U\j , , |"
-I -(^rT +^7 + -^--~rv) dxdydz'\

J J J r \ 3a;2 3?/
2 3^2 3r2

/ J

Application of Formula (44) to Huygens's Principle. We can now

employ formula (44) for an examination of Huygens's principle as

follows : Let the function U be the light-vector s of argument (t
-

r/v),

where r denotes the distance of any point of the region enclosed by
the surface S from the point of observation Q, which shall lie within

that region and which we shall choose as origin of our system of

coordinates
;
that is, we put

U= s(t-r/v), ........ ....................... (47)

At the point Q, U will then assume the value

tfo
=

*o(9................................... (47A)
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Since now any light-vector s is thereby defined, that it is an integral

of the partial differential equation

(cf. formulae (16 and 27, I.)), it follows that the light-vector U will

also be a particular integral of the same equation or

The Light-Vector s a Purely Spherical Wave-Function. Let us now
examine the case, where the light-vector s is a purely spherical wave-

function, that is, a function of r (and t)
alone and not of JB, y, z singly.

The general differential equation (48) will then assume the simple form

3'%
2
32$ ,. Q v-* ................................. (49)

(cf. pp. 17 and 18). Since now U is also a function of T (and t) only,

it will likewise be defined by the same equation or

By formulae (48A) and (49A) the following relation will, therefore,

hold here:

hence VZ7- + + -. ................ (50)3x2
3y

2 Vzz dr2

Replace now U by its value (47), etc., in formula (44), and we have,

since by (50) the volume-integral of the same vanishes,

f[
oos(m r)

l -
(< -r/*)<fo -4wi,(*)........(51)

We can now interpret this formula as follows : The light-vector s

at any point Q, which we choose as origin of our system of coordinates,

and at any time t can be conceived as produced by elementary

disturbances emitted at the times (t
-

r/v) by any surface S enclosing

that point, where r denotes the distance of any point or elementary
source M on that surface from the point Q and v the common velocity

of propagation, with which those disturbances are approaching that

point. After the elapse of the times r/v we shall have the same phase

along the surface S, as we had at Q, when the given disturbances left

that surface. We observe that these disturbances are of a much more

complicated nature than those emitted by Fresnel's elementary sources,

the latter having been assumed to be proportional merely to the light-

vector s (cf. p. 147).
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27T
s= -sin-r-(vt r). By formula (51) we can evidently determine the

r A

light-vector
s

(t)
at any point Q, provided we know the light-vector s

and ~- along any closed surface $ enclosing that point. Let us

assume that the light-vector s(t) at any point of the region enclosed

by the surface S be given by the expression

(52)
a . 27T.= -sm (vt-p),

where p denotes the distance of that point from the source of dis-

turbance s(t) is here a purely spherical wave-function, as assumed

above. The function U will then assume the form

This function U must now remain finite throughout the region of

integration (cf. p. 167); this condition will be satisfied, if the source

of disturbance lies outside the region of integration, enclosed by the

surface S. The relative positions of the points 0, M, and Q to the

surface S could then be represented as in the annexed figure.

FIG. 19.

Let us now determine the expressions under the integral-sign of the

integral (51) for the given case; we have, by formula (53),

2 2w
r .=

-A^cosT^-

d (a . 27r r .=
^ USmT [

~

a_
. 27T,

or2
sm Tl



174 ELECTROMAGNETIC THEORY OF LIGHT.

we can thus write the integral (51) for s
Q(t) here

k ...(54)

[cos (ft, p)
- cos (n, r)] cos ^- [vt -(p + r)] ds

+ a\ [
COS fa p) COS '

Approximate Expression for s () for Light-Waves. For waves of

small wave-length A, as those of light, the second or last integral of

the expression (54) for S
(t), being of a higher order of magnitude in A,

than the first integral, would be very (infinitely) small compared with

the latter and could thus be rejected. The light-vector s
Q(t)

would

then be given most approximately by the integral
/

i ^

*O(O
=
|H-[COS (^ P)~cos(ft, r)]cos^[vt-(p

+ r)]ds. ...(55)

Approximate Expression for s
(t) compared with that obtained by

Fresnel's Method. Let us compare the expression (55) for s
(t)

with

that obtained above according to Fresnel's method. For this purpose

we compare the two expressions for any surface-element do (ds) of

the surface S. The light-vector due to any such element is, according

to Fresnel's method,

(cf. formula (7)), and by formula (55)

|x pr
t
COS fa p}

~ COS fa T^ COST^ ~ ^ + T^ ds '

Since now the r
l

of the former expression is the r of the latter,

we must evidently put -^ ..................... (5(J)^

if we neglect the difference in phase between the two expressions.

For the surface-element at the point M ,
where the line OQ of

Fig. 19 enters the surface S this element corresponds to the element

.at the pole P of Fresnel's construction (cf. Fig. 17),

COS(TI, p)= -cos
(ft, r)

{cf. Fig. 19), and formula (56) will assume the simple form

If the element at the point M stands at right angles to the line OQ,

as in Fresnel's construction, then cos (%, p)= 1
(cf. Fig. 19), and hence
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the value for /(<) obtained from a comparison of the expression for

the total light-vector at any point according to Fresnel's method with

the actual expression for the same (cf. p. 164).

For the surface-element at the point 1/
',

where the line OQ
leaves the surface S (cf. Fig. 19), cos(%, /O)

=
COS(TI, r\ and hence the

effect contributed to the total effect at Q by this element zero
;

that is, by formula (55), no elementary waves will be propagated

directly backwards towards the source, from which the given

wave is advancing, as postulated by Stokes's law of obliquity (cf.

p. 148).

Confirmation of Formula (55). Lastly, it is evident that formula

(55) will give the correct phase for s
(t),

since the integration by

parts of the given integral always gives sin ^- \vt -(p + ?)] and not

cos ~Y\vt (p + ?*)]
as factor in the term of the lowest order of mag-

nitude in A, which term alone is to be retained for waves of short

wave-length, as the light-waves ;
for a confirmation of this statement

see Ex. 9 at end of chapter, where by a suitable choice of the surface S
the light-vector s

Q (t) will, in fact, be found to be given, as determined

by formula (55), by
... a . 2ir , .

the correct expression for the same. Formula (55) thus differs from

Fresnel's formula also in that it gives the correct phase for the light-

vector (cf. p. 164).

General Expression for s
Q(t)

for Waves of any Wave-Length ;

Evaluation and Confirmation of Validity of same for a Sphere S

with centre at Q. Lastly, let us evaluate the integral (54) for s
Q (t)

for waves of long wave-length, when the surface $ is a sphere with

centre at point of observation Q. For this purpose we divide the

surface of the given sphere up into surface-elements ds similar to

the zonal elements do employed on p. 146 the construction is

that -represented in Fig. 17 with the points and Q interchanged.

The area of any such surface-element ds can now by formula (5) be

written in the form

ds= 2ir pdp,
T
2

where r, the
r^ of Fig. 17, denotes the radius of the given sphere

and r
z
the distance of the point of observation Q from the source

of disturbance 0.

For the given surface the inner normal n the inner normal is
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always to be taken (cf. p. 171) at any point M will evidently

coincide with the vector - r (cf. Fig. 19) ;
we thus have

cos
(ft, p)

= cos(-r, p),

and cos
(TO, r)

=
cos(

-
r, r)= -I.

The angle (-r, p) is now the angle < employed on p. 147 (cf. also

Fig. 17); it can, therefore, be expressed as a function of the distances

r, r
2,
and p (cf . Ex. 1 at end of chapter) ;

we have, namely,

r 2 _ r2 _ p2
cos

(ft
= 2 - = cos(-r, p)

=
cos(n, p)............. (57)

By this and the above relations that hold for the given surface, the

integral (54) for s
(t) can be written

.

cos ~

-, (58)

where w = -[^A

By the reduction formulae on p. 157 the first and fourth integrals

of this expression for s can now be integrated as follows :

fcos w dp _ A, sin w X ( X cos w 1 A t A sin o>

cos."- -

A sin w / A \ 2 cos w 1 / A \ 3 sin o> 1 / A \ 4

~2^"7"~V2^y ~^~
+
2"!\W p "^SlV^/

cos o>

A sinw
"
r P

_f -if Y+VY- "1-o i \ n I

~
er 1 1 r i I

COS W

P

A / A sin w A cos w\= -
pr- cos r + sm -?

-
27T\ 27T/0 p 27iy> /3 /
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(cf. series for sin a; and cos a; on p. 158) ; and, similarly,

sin (o dp A cos w 1 A A sin o> 1 A A cos w~ ~~

f

1 _^ / X_
sin to \\\+ 42 7r\ 2^ p*

'

"7/J
A cos W 1 / A \ 2 sin w 1 / A \ 3 cos o> 1 / A \ 4 sin <o

"^"/^"aJV^y p
8

31V2*-/ ~7*~
+
4!\2V "T3

"

COS to

+ 1-
A \ 2 1 / A \* i sin w sm w

A cos to A sin w sin o>= sm + cos .

The values of the other integrals of the expression (58) are evidently

|p
cos <i>dp

= -
^ p sin o> + I

J
cos w,

f
A

i f ,7
A

I cos w$p = sm to, and I sin o>ap = cos w.

J '2ir J -2TT

Replace these integrals by their values in the above expression (58)

for s
Q(t) t

and we find

4a* (l)=-

+
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or, since the coefficient of sin -=-
\vt

-
(r2 + 2r)] evidently vanishes,

the correct expression for the given vector at the point Q. It thus

follows that not only the approximate formula (55), but also the

exacter one (54), which holds for waves of any wave-length, will give

the correct expression for the light (electromagnetic) vector, both ampli-

tude and phase.

The Light or Electromagnetic Vector a Spherical Function and

Huygens's Principle; the Primary and Secondary Waves. Formula

(54) evidently holds for both light and electromagnetic waves of any

wave-length, but provided only the vector s employed be a purely

spherical wave-function, that is, a function of r (and t) only and not

of x, y^ z singly. For the general spherical wave-function the differ-

ential equation (49), which defines the purely spherical function, does

riot now hold, and hence the relation (50) also not
;
in which case, the

volume integral of formula (44) will not vanish
;
this would evidently

complicate the treatment of the given case, since it would then require

a knowledge of s and its derivatives not only along the surface S, but

also throughout the whole region of integration. On the other hand, the

given treatment would also be complicated greatly, since not only the

general spherical wave-function itself always consists of two or more

terms, neither of which is a particular integral of our general equation
of wave-motion (48) (cf. p. 35), but also its value is a function not

alone of r, the distance from the source, but also of x, y, z singly.

Whether it would be possible to evaluate s
(t)

for such a function is

a question that could be decided only by investigation.

EXAMPLES.
1. Confirm the expressions for F(p) of formulae (18) and (ISA), Stokes's and the

natural laws of obliquity.

The annexed figure (cf. also Fig. 17) gives the following relations between the

obliquity <, the angles 6 and 6', and the distances p, r
ls and r2 :

2rx cos 0,

and rj
2= r2

2+ p
z - 2r2p cos 0',

by which equations can evidently be determined as a function of
/>,

r
l5 and r.2 .

The last two equations give

ay,

and mf=rt-f+? hence

hence si, e=
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Since now < 9^ IT and < 0'< 7r/2, sin 6 and sin #' will always be positive,

that is, the plus signs must be taken before the expressions for sin 9 and sin 0'.

FIG. 20.

By the first of the above relations the obliquity can thus be written

cos = cos (0 + 6')
- cos cos 6' - sin 6 sin 6'

4r2
2rlP

which is the natural law of obliquity in terms of
/>,

r
l5
and r2.

Stokes's law of obliquity can thus be written

s' proportional to (1 + cos 0) = 1 +^ "^^=^ "
'

f

7
"

1
"

- Q.E.D.

2. Show, when m is odd, that the series (14) for 8 reduces to

3. The (Fresnel) light-vector 8 assumes most approximately one and the same

values, those of the natural light-vectors, along the line PQ, Fig. 17, when the

small aperture in the large intercepting screen is not exactly circular.

To determine the light-vector produced at any point Q by the elementary
waves that are admitted through any irregular aperture at the pole P, we
divide the given aperture or unscreened portion of the given wave-front up
into circular sectors, as on p. 154 the small screen, replacing the edge or

contour of the given aperture by circular arcs with common centre at P ; the

light-vector dS produced by the elementary waves that pass through any such

unscreened sector of the given aperture will then, by formulae (17) and (17A),

be given by the expression

s(vt-r,), ............ (a)
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where dfa denotes the angle subtended by the arc of the given sector at the pole P
and pl the distance of that arc (edge of aperture) from the point Q ; m^ corresponds

to that value of m, for which Pi
= r2 -rl +

7

^
The total effect or light-vector 8 produced at the point Q by the elementary

waves admitted through the whole aperture will, therefore, be given by the sum

of the light vectors dS ;
we thus have

dS dSm

where K denotes the number of sectors, into which the given aperture is

divided, or by (a),

r
(6)

The series in the larger brackets in the second term of this expression will now
be small compared with the value assumed by the same, when the aperture is

exactly circular and with its centre at P, since approximately (in mean) one half

of the terms of this series will be positive and the other half negative. The

approximate value assumed by the expression (b) for S will thus be

a function of r2 only, the distance of the point of observation Q from the given

source (cf. p. 153).

4. Show that the following relation holds between the
'

2's (cf. formulae (28s) )

of any three consecutive zones :

5. On the assumption of Stokes's law of obliquity (cf. formulae 18) ), show that

the total electromagnetic vector at the point Q, Fig. 17, is determined by the

expression

(^
-
^- sin -

(vt
- ra

- 2ra ) k
JlTT A J

which for comparatively small values of X can be written approximately in the

form

a 2a\ 27T. a\2
. 2ir . a\3

S=- cos (vt
-

r.,)
- s--.

--
: sin (vt

-
r,)

-
v

-r) X
v

aX2
2-rr
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(cf. formula (33A)) ; it is evident that this expression reduces to that (20) for the

light-vector proper for very small values of X.

6. For light-waves the expression (33) for the electromagnetic vector reduces

to that for the light-vector (cf. formula (19)). This follows directly from the

approximate expression (cf. formula (33A)) for the electromagnetic vector.

7. Small deviations in the contour of the intercepting screen from the exact

circle with centre at pole will have no appreciable effect on the value of the

electromagnetic vector behind that screen. This is evident, since all the terms

of the series for the electromagnetic vector, corresponding to the different

elements of arc, by which the contour of the given screen may be replaced,

will have, in general, one and the same and not, as in the case of light waves,
different signs (cf. Ex. 3), so that the given series will assume a finite value.

8. Determine the behaviour of the (electromagnetic) vector at the point Q,

Fig. 17, due to the action of electromagnetic waves admitted through a small

circular aperture (with centre at pole) in a large intercepting screen.

The examination of the following two particular cases will suffice for the

determination of the behaviour of the given vector : (
1

) the aperture admits the

waves from the whole central zone only, and (2) the aperture admits the waves

from the whole central and adjacent (first) zones only.

CASE 1. By formulae (24A)-(26A), (27), and (28) the total electromagnetic vector

at Q will evidently be given here by the expression

where the integration is to be extended from

p= r%-rl to p-r.2 -

Replace here p by these limits, and we have

irairJ-r-

-^2
sin^ (vt

- r2
-
X/2)

-A
(ra

-
r, + X/2) cos^ (vt

- r, -
A/2)],

or, approximately (for comparatively small values of X),

*
C S (Vt

- r* ]
~ *

a\ . 27T, aX2
. 27T.

, aX(r2
2 -r

1
2

)---



182 ELECTROMAGNETIC THEORY OF LIGHT.

_X 2?r aX2
. 2?r ctX3 r2 + ri

(t;e
_.

+ TaX__
aX2^

aX2 aX3
(rg +r^^-rj + X^)") . 2?r

Sill ~T I VvCaX
2 aX3

(r2 + r-^ (r2
- rx

27rr1(r2
-

rj)

~
4 7rr2r1 (r2

- rx ) (r2
- rt

C aX3 r2 +n aX4
(ra+ ra ) [|(ra

- r
t )

2 + 3 (ra
- n) X/4 + X2/8]

'

J

or, if we reject all terms of higher orders of magnitude in X than the third,

(^ - r2 ),

A comparison of this expression with that (33A) for the natural electromagnetic

vector or that produced, when no obstacle is placed in the course of the given

waves, shows that the given electromagnetic vector is approximately twice as

large as the natural one, or, more exactly, that the former differs from the latter

(doubled) by an expression that is of one higher order of magnitude in X than that

for either.

CASE 2. Similarly, the electromagnetic vector would evidently be given here by
the expression

X

which for values of X, that are small compared with r2 and rlt can be written

,
a\ 2-jr. A aX2

. 27T, aX3 r2 + rl
Sir. .

S=-M-(*-r,)-z^^^

,
-
r, + X)

2

sin(vt-rz )

r2
-

ri + x) cos (V^
'

r2) + sin
(
^ -

or, if we reject all terms of higher orders of magnitude in X than the third,

aX2
(2r2 + X) 2ir, aX3

(r2 + rj) . 2?r-S 8-^rcos z?^-r )-^
1;

x . 9 sm -r-(^-n).-r1 + X) X
v

27r/ 2r1(r2 -r-1 +X)
2 X v

A comparison of this expression with that (33A) for the natural electromagnetic

vector shows that the given electromagnetic vector is determined by an expression



EXAMPLES. 183

that is of one higher order of magnitude in X than that for the former (cf. also

p. 156).

9. Evaluate the integral (55) for the light- vector s (t), when the surface of

integration $ is a sphere with centre at the point of observation Q.

We divide the surface of the given sphere up into surface-elements ds as on

p. 175 ;
the following relations will then hold :

T
ds= 2ir p dp,rz

cos (n, p)
= cos (-r, p)

= cos <p

where we are assuming the natural law of obliquity, and

cos(n, r) cos( -r,r)= -I

(cf. formulae on pp. 175-176) ; by which the integral (55) can be written

air r.J-r2 fcos wdp air 1 f , air [
-r--71
-

/
-- - -r- p;

-
/ p COS dl dp + -

/X 2r2r J p X 2r2rJ
r Xr2J

2?r
where u= ^-{vt-(p + r}].

\

These three integrals have now been evaluated on pp. 176-177. Since we have

retained terms of only the lowest order of magnitude in X in formula (55), we can

evidently retain only such terms in the evaluation of the vector sought or its

integrals ; the approximate values of these integrals are evidently

/cos

w T X sin a) f X , /* X- dp= -jr
--

, / p cos udp = -
p-p

sin w, and / cos wdp= - ~- sm w -

Replace the integrals by these values in the above expression for s (t), and

we have
Tt? - r2 sin w 1 1 .

s (t)=-a .
--\-a. .

4r2r p 4r2r
r 2r2

where the integration is to be extended from

pl = r2 -r to ftj
= r2 + r.

Replace here p by these limits, and we have

the actual expression for the light-vector at the distance r2 from source.

10. Show that the function f(<p) employed in the determination of the light-

vector according to Fresnel's method must be assigned the value

in order that we may obtain the correct expression for the amplitude of the

light-vector.



CHAPTER VI.

DIFFKACTION.

Diffraction Phenomena. The phenomena that appear at the boun-

daries of the geometrical shadow, when light rays pass through a very
small aperture or by the edge of an opaque body placed in their course,

are known as the phenomena of "Diffraction" ; they arise, figuratively

speaking, from the light rays deviating from their rectilinear paths.

A similar class of phenomena that arise from the same cause, the

deviation of the light rays from their rectilinear paths, has been

examined in the preceding chapter ;
there we investigated briefly the

behaviour of light (its intensity) directly behind small screens and

small apertures in large screens along the central axis of the geo-

metrical shadow or image respectively. For the particular case, where

the aperture or the small intercepting screen or obstacle is very small,

this latter class of phenomena is, as we shall see below, to be included

in the former or that of the phenomena of diffraction.

First Observations on Diffraction. The first observations on diffrac-

tion were made by Grimaldi* at Bologna in 1665; he found upon

placing a small opaque obstacle (wire) in the cone of light admitted

into a dark room through a very small aperture that the shadow cast

on a screen behind that obstacle was much larger than the geometrical

shadow; he also observed that the enlarged portion of the shadow

consisted of coloured bands or fringes that ran parallel to the edge of

the geometrical shadow. Newton f was among the first to examine

the complementary case or the image cast by light admitted through
a very small aperture or narrow slit; the slit employed was formed

by two knife blades, which admitted only a very narrow strip of

light ;
he found that the image was then bordered exteriorly by parallel

*
Physico-mathesis de lumine, coloribus et iride, Bononiae, 1665.

f Opticks, vol. iii.



DIFFRACTION. 185

coloured fringes similar to those already observed by Grimaldi on the

exterior of the shadow cast by a small obstacle (see below).

Young's Explanation of Diffraction. The first attempt to explain

diffraction phenomena was made by Dr. Young;* he attributed the

(coloured) fringes to the interference of the rays that pass very near to

the edge of the obstacle and those that are reflected by the same at

grazing incidence. This explanation would evidently stipulate that

the given phenomena be more or less marked according to the degree

of polish and sharpness of the edge. Fresnel has now shown by most

exact experiments f that these factors, polish and sharpness of edge,

have no effect whatever on the fringes produced, the fringes retaining

the same position (with regard to edge) and intensity, whether the

back or (sharp) edge of the knife (razor) be employed and whether

that edge be highly polished or not.

Fresnel's Theory of Diffraction. Fresnel, who had demonstrated

experimentally the incorrectness of Young's explanation of diffraction

phenomena, not only offered us another explanation but also confirmed

the same by a series of most ingenious and exact experiments. +

Fresnel attributes the phenomena of diffraction to the mutual action

of the elementary waves that are supposed, according to Huygens's

principle, to be emitted from any wave-front, here that which passes

through the edge of the intercepting obstacle
;

the mutual action of

these waves at any external point is then calculated according to the

principle of interference (cf. Chapter IV.). Diffraction phenomena are,

therefore, to be conceived as due to the mutual action or interference

of the elementary waves emitted from the various (elementary) sources

on the wave-front in question, just as interference phenomena are due

to the mutual action or interference of two systems (pencils) of waves.

Let us first examine those problems on diffraction that can be

treated by the simple methods employed in the preceding chapter;

these methods, which are only approximate ones, have been deduced

from Huygens's principle as postulated by Fresnel and the principle of

interference.

Diffraction of Light on the Edge of an Opaque Obstacle
;

the

Exterior Bands. Let be the source of a system of spherical light

waves, A the straight edge of an opaque obstacle AS, MN the screen

of observation, and P that point (line) on the screen that lies on the

continuation of the line (plane) or ray (rays) OA, as indicated in the

* " On the Theory of Light and Colours," Phil. Trans., p. 12, 1802.

t Fresnel, Oeuvres completes, torn, i., pp. 148 and 280.

J
" M^moire sur la diffraction de la lumiere," Memoires da, I'A cad. franq.,

torn. v. Poggend. Annul., vol. xxx. Oeuvres completes, torn. i.
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annexed figure. P will then mark the upper boundary of the

geometrical shadow on the screen. Let us first consider the illumina-

tion at any point Q on the screen outside the geometrical shadow.

For this purpose we draw the spherical wave-front S that passes

through that point of the edge A of the obstacle AB, which

corresponds to the point Q. We denote the point, where the

line or vector OQ intersects this wave-front by P; P is then

the so-called "pole" of the given wave-front with respect to the

external point Q (cf. p. 146). According to Fresnel the (light) effect

at Q can now be conceived as produced by the. mutual action at

that point of the elementary waves emitted from the wave-front S,

Q:

FIG. 21.

whereas for light waves the given effect may be conceived as confined

to the mutual action of the elementary waves emitted alone from the

immediate neighbourhood of the pole P with respect to the point Q,

or, as we have seen in Chapter V., to a limited number of the so-called

"half-period elements" around that pole. If the pole P be at consider-

able distance (compared with the wave-length) from the edge A of

the obstacle, then the elementary waves that are intercepted by the

obstacle will evidently have no appreciable effect at the external point

Q, that is, the illumination at Q will be approximately the same as

when the given obstacle is removed. On the other hand, if the point

Q be very near the boundary of the geometrical shadow P
,
its pole P

will be so near the edge A of the obstacle that a given portion of the

elementary waves emitted from the lower half of the effective part

of the given wave-front will be intercepted by the obstacle.

The resultant effect at Q will then consist of two effects, that

from the whole upper half of the given effective wave-front and that
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from that portion PA of the lower half of the same that extends from

the pole P to the edge A of the obstacle. The former effect at Q will

remain constant as long as the pole P is above the line (plane) OAP^
whereas the latter will evidently vary between maxima and minima

according as the number of half-period elements contained in the

unscreened portion PA of the lower half of the effective wave-front

be odd or even respectively; if PA contain an even number of such

elements, the waves from the first and second, third and fourth, and

all consecutive pairs will interfere destructively with each other, and

hence produce no appreciable effect at Q; if the number of these

elements be odd, 2i + l, where n is an integer, the waves from the

first n pairs will interfere destructively as in the former case, whereas

those from the (2n+l)st or last unscreened half-period element will

not interfere with those from the next element, which are intercepted

by the given obstacle, and they will thus contribute materially to

the total effect at Q. Or, analytically, if

AQ-PQ = 2n\/2,

we shall have a minimum of intensity or a dark band or fringe at the

locus of the point Q with respect to the edge A of the obstacle, and if

a maximum of intensity or bright band.

It thus follows : the shadow cast on the. screen MN by the obstacle

AB will not be distinctly marked, but it will be bordered exteriorly

by a series of alternately bright and dark bands or fringes running

parallel to the edge of the obstacle or to its geometrical shadow
;
and

these bands will become less and less distinct, the further we recede

from the boundary of the geometrical shadow.

Condition for the Appearance of Exterior Bands. Diffraction bands

can evidently appear on the boundary of a geometrical shadow only
when the angular diameter of the source of light is very small

;

for, if this diameter is not small, each point of the source will emit a

different wave-front and each such wave front a corresponding system
of elementary waves, each one of which will produce a different set of

bands on the screen
;
and these numerous sets of bands or fringes

upon being superposed will interfere or destroy one another, and thus

produce an uniform illumination of the screen (outside the geometrical

shadow) (cf. also p. 111).

The Diffraction Phenomena within the Shadow. Let us next

examine the illumination at any external point Q' on the screen MN
within the geometrical shadow, that is, below the central point (line) P

(cf. Fig. 21). Here only a portion of the upper half of the wave-front
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S will transmit elementary waves to point Q', and the waves from that

portion will be less effective than those from the lower portion of

the same, which are intercepted by the obstacle AB, since their sources

are more remote from the pole P with respect to the point Q (cf. Fig.

21) than those of the latter. To find the total effect at Q' we divide

the unscreened portion of the given wave-front up into half-period

elements, beginning at the edge A of the obstacle AB, and calculate

the resultant effect of the waves from those elements according to the

method employed in the foregoing chapter. This effect will evidently
be determined by the same expression as that for the resultant effect

at an external point, when its pole and the immediate neighbourhood
of the same is covered by a small screen

;
the latter has already been

determined in Chapter V. (cf. pp. 153-154) ;
we found, namely, that the

resultant effect was half that produced by the waves emitted from the

first half-period element of the unscreened portion of the given wave-

front (cf. formula (21, V.)). As Q' recedes from the central point P
downwards into the geometrical shadow, the resultant effect will, there-

fore, diminish continuously but rapidly, since at a short distance below

the central point the elementary waves from the whole effective

portion of the given wave-front, that around the pole P', will all

be intercepted by the given obstacle. The illumination within the

given geometrical shadow will, therefore, decrease rapidly but continu-

ously, as we recede from its boundary.
Diffraction Phenomena produced by a Small Opaque Obstacle

;

Exterior and Interior Bands. Let us, next, examine the diffraction

effects due to a small opaque obstacle, such as a fine wire. We

M

FIG. 22.

represent the relative position of the obstacle (wire) AB, the source

and the screen MN, as in the annexed figure. It follows now from

the preceding problem that the geometrical shadow P
Q
P '

on the

screen AfN, not only its upper boundary P but also its lower one
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PQ, will be bordered exteriorly each by a system of alternately bright

and dark bands or fringes similar to those produced by the straight

edge A of the larger opaque obstacle in the problem just treated.

Moreover, we have seen in the preceding problem that the effect

at any point Q within the geometrical shadow was produced alone

by the mutual action of the elementary waves emitted from the

unscreened portion of the given wave-front and that this could be

replaced by the mutual action halved of the waves emitted from

its first unscreened half-period element, that is, the first such element

reckoned from the edge A of the obstacle. Hence, the effect produced

here at any point Q
f

within the geometrical shadow P
Q
P

Q

'

will

evidently be determined by the mutual action halved of the waves

emitted from the first unscreened half-period element of the upper
half of the given wave-front and of those from the first such

element of its lower half, this latter element being reckoned from

the lower edge B of the obstacle. If the edges A and B of the

obstacle are now equidistant from the source and also from the

screen MN, as we shall assume here, the waves from the two half-

period elements in question will have the same phase upon leaving

their respective sources on the given wave-front. On reaching

any point Q
f

on the screen, they will, therefore, differ in phase only

by the difference in the distances AQ' and BQ' traversed, and thus

cooperate or interfere with one another accordingly. The interior

of the geometrical shadow P P
Q

'

will, therefore, exhibit a set of

alternately bright and dark bands or fringes, and these bands will

evidently be similar to the interference-bands produced by waves

emitted from one and the same source and brought to interfere, after

having traversed slightly different paths (cf. p. 108).
v That these

bands are, in fact, due to the interference of the two systems of

elementary waves that bend round the edges of the given obstacle,

has been demonstrated by Dr. Young as follows : he intercepted the

one system of light rays by an opaque screen placed first in front of

the obstacle, that is, between it and the source, and then behind

the same, and found that in both cases the set of interior fringes

disappeared completely, whereas the exterior fringes remained un-

altered on that side of the geometrical shadow, where the waves were

not intercepted ;
from which it is evident that the interior fringes

are due to the interference of the two systems of elementary waves

that pass over the edges of the obstacle, just as the phenomena
of interference proper are due to the mutual action of two systems
of ordinary waves, whereas the exterior fringes on either boundary
of the shadow are produced by the mutual action alone of the
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elementary waves that pass over the respective edge of the obstacle,

as maintained above.

Conditions for the Appearance of Interior Bands. The interior

diffraction bands, like the exterior ones, can evidently only appear
when the angular diameter of the source of light is very small or

narrow. But this is not the only condition for the appearance of

interior fringes ;
their appearance also demands that the diffracting

obstacle be very narrow; for otherwise the luminous effect within the

geometrical shadow due to the action of the elementary waves that

pass over either edge of the obstacle will extend only to a compara-

tively short distance within the shadow, since the effective portion

of that half of the given wave-front, which is confined, as we have

seen above, to the immediate neighbourhood of the pole, will be

screened off by the obstacle, except at points very near the bound-

aries of the shadow; the waves that pass over the one edge of the

obstacle and those that pass over the other will not then over-

lap within the geometrical shadow, that is, there will be no inter-

ference within the same between the two systems of elementary waves.

The interior of the given shadow, instead of exhibiting a set of fringes,

as is the case when the diffracting obstacle is very narrow, will,

therefore, be illuminated only at and near its boundaries
;

this

illumination, which is brightest at the boundaries of the geometrical

shadow, will evidently decrease continuously but rapidly, as we recede

from the same towards the centre of the shadow (cf. p. 188).

Expressions for the Breadths of the Bands. Lastly, let us deter-

mine the breadths of the exterior and interior diffraction fringes

produced on the screen MN by the narrow wire AB of Fig. 22. It

is now easy to show that the breadth of the nth exterior fringe from

the boundary of the geometrical shadow is given by the expression

when the fringe is a dark one, and by

when the fringe is a bright one (cf. Ex. 1), where a denotes the

distance of the edge A of the obstacle AB from the source and

b its distance from the screen MN. By Ex. 3 at end of chapter the

breadth of any interior fringe is given by the simple expression
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where b denotes the distance between the screen and the obstacle, as

above, and c the distance (breadth) between its two diffracting edges.

We observe that the expression (1) or (2) for the breadth of an

exterior band is a function not only of the distances a and b but

also of the band n in question ;
that is, the exterior bands will not

be of equal breadth, but they will evidently decrease in breadth, as

we recede from the geometrical shadow (cf.
Ex. 2). On the other

hand, the expression (3) for the breadth of an interior band is a

function only of the distances b and c and not of the band in

question; these bands will, therefore, be of equal breadth, and in

this respect they will differ from the exterior bands.

Relative Breadths of the Exterior and Interior Bands. Let us now

attempt to compare the breadths of the exterior and interior bands,

the expressions (1) or (2) and (3), with each other. We have seen

above that for the appearance of interior bands the breadth c of the

obstacle AB must be taken small compared with easily measurable

quantities, such as the distances a and b. We can express this in

the form
c = eb, ..................................... (4)

where e shall denote a small quantity. Let now
!2/>i

denote the

number of bands, dark or bright, within the geometrical shadow.

The difference (DE) in the paths traversed by the waves from B(D)
to P (Pn) and from A(C) to P (Pn) the letters in the brackets refer

to Fig. 12, those without brackets to Fig. 22 will then be

(DE) = ^X = r
1c, ............................... (5)

where
77
shall denote a small quantity. The relative magnitudes of these

two small quantities, e and
>?,

are now to be sought.
From the similarity of the two right-angle triangles (CED] and

(OPPn) (cf. p. 110), we have

or, by (5) and Fig. 22,

rjc : c cos =
ftd)} : b,

where denotes the very small angle (ECD) (cf. Fig. 12) and o^ the

width of any interior dark or bright band. Since now f is very small,

we can put cos = 1 approximately and thus write the last proportion
in the form

rj : 1 = po, : b,

or, by (4), rj
: =^i :c.................................. (6)

It is now evident from Fig. 22 that

; .............................. (7)
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we observe here that, although the breadth <0
4 of the interior bands is

not a function of the distance a (cf. formula (3)), the number of bands

2/z that will appear within the geometrical shadow is a function of

that distance.

The proportions (6) and (7) give

r):
= a + b:2a, (8)

the relation sought between the two small quantities e and 77.

By this and relation (5) we can write the wave-length A as follows :

v _i]C _a + b c
A = = e,

ft '2a
fj.

(a + b}b e2

or, by (4), *-Sr-?
Replace A by this value in the expressions (2) and (3) for the breadths

of the exterior and interior bands respectively, and we have

and .

c 2a

where we and o^ are expressed in terms of e and p in place of A, and hence

w :w
'
=
/(w )

:^ (9)

As the number of interior bands
(2/>t) increases, their breadth will,

therefore, diminish relatively compared with the breadths of the exterior

ones, especially of those near the boundaries of the geometrical shadow

(cf. the values of f(ri) for different n's in Ex. 2 at end of chapter). The

interior bands will, therefore, in general (except for small values of
/x),

be finer or closer together than the interior ones, a result that is

confirmed by observation.

Diffraction Phenomena produced by a Narrow Aperture ;
Exterior

Bands. Let us, next, examine the complementary case to the above,

the effect produced on a screen MN by light that passes through a

very narrow slit or aperture AB in a large screen, as indicated

in the annexed figure. To determine the illumination at any point

Q outside the geometrical image -/VV* we divide the unscreened

portion of the wave-front S that passes through the two edges
A and B of the slit up into half-period elements, beginning at

the point A of the same. If now the slit were not narrow, the un-

screened portion AB of the wave-front would be so large that it

would include the whole unscreened effective portion of the same,

and the resultant effect at Q would evidently be given by the
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mutual action halved of the elementary waves from its first (from

A] unscreened half-period element (cf. p. 188) ;
in which case the

illumination outside the geometrical image would evidently decrease

rapidly but continuously, as we receded from the boundary P or P
Q

'

of the image (cf. p. 188). In the given case, where the aperture

is assumed to be (very) small, the unscreened portion AB of the

given wave-front will include only a (small) part of the effective

wave-front, that is, only a limited number n of half-period elements

of the latter; the effect at Q will then depend on the number

of elements in question, whether the same be odd or even, since the

first and second, third and fourth and each consecutive pair of half-

period elements will each emit elementary waves that will interfere

M

FIG. 23.

mutually with one another at Q. The point Q (its locus) will, there-

fore, be bright or dark according as the number n of the half-period

elements of the unscreened portion AB of the given wave-front be odd

or even. The upper and lower portions of the screen MN outside

the geometrical image P
Q
P

Q

'

will, therefore, each exhibit a system of

alternately bright and dark bands similar to the exterior bands on the

boundary of the geometrical shadow of a large opaque obstacle or fine

wire (cf. above). The distances of these bands from either boundary
of the geometrical image and their breadths will evidently be

determined by similar expressions to those already found for the

exterior bands on the boundaries of the geometrical shadow of a small

opaque obstacle (cf. formulae (1) and (2) ajid Ex. 1 at end of chapter).

Conditions for the Appearance of Interior Bands and Method for

their Determination. If the screen MN is so remote from the aperture
AB of Fig. 23 that at the boundary P or P '

of the geometrical image
the unscreened portion AB of the given wave-front includes only the

first half-period element, that is, if BP - AP
Q
= A/2, then the first (bright)

band will appear at the boundary of the geometrical image, and the

diffraction phenomena exhibited will evidently consist of two sets of

exterior bands, one on either boundary of the geometrical image (cf.
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above). On the other hand, if the screen of observation is at such a

distance from the aperture that at the point P or P
Q

'

the unscreened por-

tion AE of the wave-front includes several half-period elements, then

bands will evidently appear within the geometrical image, but the deter-

mination of their position, breadth and intensity will offer difficulties that

cannot readily be solved by the simple methods employed above. This

is evident from the following considerations : Take any point Q' on the

screen MN within the geometrical image (cf. Fig. 23). The luminous

effect at that point is now due to the mutual action of the elementary
waves from the several half-period elements, into which the unscreened

portion AE of the given wave-front can be divided with respect to

the point Q'. At any point Q outside the geometrical image the un-

screened portion of the wave-front consisted of a portion of either only

the upper or the lower half of the same, and we were able to divide

that unscreened portion up into half-period elements, beginning at the

respective edge of the aperture, without any further reference to the

pole with respect to the point Q, and to determine the effect at Q

according as the number of those elements was even or odd. Here,

on the other hand, the unscreened portion of the wave-front includes

a portion of the upper and a portion of the lower half of the same with

respect to the respective pole P ;
we must, therefore, divide the given

unscreened portion of the wave-front up into half-period elements

with respect to that pole P'
(cf. Figure 23) and on both sides of

the same
;

this division would, in general, give not only a different

number of half-period elements on either side of the pole but also a

different residual of an element at either boundary of the unscreened

portion, the edge A or B of the aperture. The determination of the

luminous effect at any point Q' produced by the elementary waves

from these half-period elements would, therefore, be quite complicated,

at least, according to the simple methods employed above
;

it would,

in fact, evidently be given by the sum (with reference to phase) of the

following single effects : First, the effect due to the mutual action of

the elementary waves from all the whole half-period elements on that

side of the pole, which contains the smaller number m of unscreened

elements, and from the first m such elements on the opposite side;

the effect or illumination produced by these waves at the point Q'

would now be either large, 4 times the natural effect, or very small,

approximately zero, according as m is odd or even (cf. p. 156).

Secondly, the effect due to the mutual action of the elementary waves

from the remaining I m unscreened whole half-period elements of the

given wave-front, where I denotes the total number of such elements,

into which the larger unscreened portion of the wave-front with
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respect to the pole F can be divided
; the effect produced at Q' by

the waves from these I - m elements would, like the first effect, be

either large or very small according as l m were odd or even.

Lastly, the effect due to the mutual action of the elementary waves

from the two residual half-period elements at the edges A and B
of the given aperture ;

their effect at Q' would evidently depend
on their relative size compared with the adjacent elements and with

each other, and whether both (/+!) and (m+1) be odd or even or

the one odd and the other even. The expression for the total

resultant effect at Q' would, therefore, be an extremely complicated

one, evidently such an one as could not readily be determined by
the simple methods employed above.

For the diffraction phenomena produced by a small circular aperture

in a large opaque screen, see Ex. 4 at end of chapter.

Diffraction Phenomena of the Primary and Secondary (Electromag-

netic) Waves. Let us now consider the diffraction phenomena pro-

duced by the primary electric waves, for example, the linearly polarized

electromagnetic waves of the most general form, those represented by the

first terms of the expressions for X, Y, Zoi formulae (43, II.). It is now
evident that the waves of the given system that come into consideration

for diffraction phenomena or those emitted from that portion of the given

wave-front, which is supposed to give rise to such phenomena, may
be regarded as approximately, here linearly, polarized (cf. also p. 78),

provided their source be at considerable distance from the diffracting

obstacle
;
that is, the direction-cosines a, /?, y in the coefficients of the

expressions for the component moments may be regarded here as

constant. If we write the given component moments Xv Yv Z^ in

ri
2 n 2 n2

the form X- = I sin o>, Y
l
= m sin <o, Z = p sin to,

where I = a^/3
2 + y

2
)
- a (a2/3 + a

sy),

m = a
2(a

2 + y2)
_

p = a
3(a

2 + 2)
-

and to = n[vt
-

(r + 8)],

we may, therefore, regard these coefficients I, m, p as constant

throughout that portion of the given wave-front, which comes into

consideration in the determination of diffraction phenomena, that

is, we may assume here, as above, that the several elementary sources

on the portion in question of the given wave-front all emit similar

elementary waves. The mutual action of these waves at an external

point would, therefore, be subject to the same laws as those for

the light waves already treated, and hence the phenomena of
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diffraction produced, being due to the same causes, difference in

phase between the elementary waves at an external point due to

difference in the paths traversed, etc., similar to those of light. The

above would evidently also hold for the secondary electric waves.

The diffraction phenomena exhibited by the electric waves would differ

from those of light only in relative magnitude, the bands of the

former, which are always proportional to the wave-length A of the

waves employed, being much broader than those of the latter. On the

other hand, the bands of the primary and those of the secondary waves

would be of the same dimensions, since the wave-length of the secondary
wave that accompanies any primary disturbance is always that of the

latter (cf. formulae (43, II.)). The bands produced by the secondary
waves would be much less brilliant than those exhibited by the primary,
at least, when the source of disturbance were at considerable distance

from the diffracting obstacle, as assumed here, since the intensity of

the secondary wave varies inversely as the fourth power of the dis-

tance from source and that of the primary inversely as its square.

We could, therefore, expect to obtain bright diffraction bands

from the secondary waves only either near their source or in

those regions, where the secondary waves were unaccompanied by

primary disturbances (cf. pp. 49-52 and 61-62). Near the source

the secondary waves would now evidently be neither approximately

(linearly) polarized nor of one and the same amplitude or intensity,

that is, the elementary waves emitted from the different sources

on that portion of the given wave-front that comes into con-

sideration in the determination of diffraction phenomena would differ

here appreciably from one another, both in intensity and direction

of oscillation, so that, aside from the difficulties encountered in the

actual determination of their mutual action at an external point, no

great regularity in intensity or its distribution (law of dispersion of the

intensity) and hence only correspondingly irregular diffraction bands

could be anticipated; this would be true not only of the secondary
but also of the primary waves in the neighbourhood of the source.

The only regions where it might be possible to detect secondary
diffraction bands of any great degree of regularity in distribution and

intensity would, therefore, be those remote from the given source,

and where the secondary waves were unaccompanied by primary
disturbances (cf. pp. 49-52).

Diffraction of the Roentgen Eays. In connection with the above

we may call attention to the experiments of C. H. Wind * on the

*"Zum Fresnelschen Beugungsbilde eines Spaltes," Physikalische Zeitschrift,

vol. i., p. 112 (1900), and vol. ii., p. 265 (1901).
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diffraction of the Roentgen (X) rays on a narrow wedge-shaped slit;

the observation-screen exhibits systems of diffraction bands, which

have been photographed and are, with the exception of certain

irregularities (cf. above), 'remarkably similar to those obtained from

actual calculation by Fresnel's method.

Fresnel's Theory of Diffraction and its Shortcomings. The above

simple methods for the determination of diffraction phenomena were

employed by Fresnel, and with great success, for the results obtained

agreed in the cases treated with those of observation. There are,

however, many problems that cannot readily be solved by the applica-

tion of these methods, at least in the simple form employed above,

as, for example, the determination of the distribution and intensity of

the bands within the geometrical image of a small opaque obstacle

(cf. pp. 194-195). Fresnel now developed these simple methods and

the principles embodied therein and found new ones, by means of which

he was enabled to treat and solve the more complicated problems on

diffraction
;
these new principles and the methods deduced from them

then led to a concrete representation or theory, which is known as

" Fresnel's Theory of Diffraction." These methods of Fresnel, which

are graphic ones, the resultant intensity being represented by means of

a spiral, the so-called " Cornu spiral," the determination of which re-

quires the evaluation of two (definite) integrals that are known as
" Fresnel's Integrals," are now so exhaustively expounded and the

different problems on diffraction so extensively treated in the standard

text-books* on the theory of light that I shall not repeat them

here, at least not in the form employed by Fresnel. Another, perhaps
the chief, reason why we shall not follow Fresnel's method of treatment

is the following : We have seen in the chapter on Huygens's principle

that the form assumed by Fresnel for representing the elementary waves

emitted by the different (elementary) sources on any wave-front was

not the correct one, for the mutual action of those elementary waves

at an external point gave for the simplest case, where the given
waves were in no way obstructed by foreign bodies, an expression for

the light vector at that point that differed materially from the actual one.

On the assumption of Fresnel's form for representing the elementary
waves we could not, therefore, expect to obtain the correct expression
for the light vector at an external point for the cases of diffraction,

where a given portion of the (light) waves is always intercepted.
That the results obtained by Fresnel's theory of diffraction agree
with observation is beyond all doubts; but we must realize that

*Cf. Preston, The Theory of Light, pp. 243-287.
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these results are only relative or qualitative ones
; they give only

qualitatively the phenomena sought, a result we might easily have

anticipated, for, although an incorrect expression was chosen for

the form of the elementary waves, the very principles upon which

the phenomena of diffraction depend were recognized by Fresnel and

embodied in his theory.

Theory of Diffraction based on Integral Expression for Light-

Vector. Henceforth we shall base our treatment of diffraction

phenomena on the formula (51) derived in the preceding chapter,

which expresses the light-vector at any point, as the integral of a

given expression taken over any surface that encloses that point.

First of all, this formula must be made to conform to the conditions

prevailing in the given medium
;
this will necessitate the introduction

of certain modifications and assumptions due to the presence of the

foreign bodies or obstacles, to which the phenomena of diffraction are

ascribed. Let us now consider the form of the expression under

the integral sign in formula (51, V.) at any point M on the

surface S enclosing the point Q, at which the light-vector s shall

be sought, when obstacles are placed in the course of the waves

emitted by the source of disturbance (see Fig. 19). We have

now seen in Chapter Y. that for the simple case, where no obstacles

intercepted the waves from 0, an evaluation of the given integral

was possible, when we chose as surface of integration S a sphere

with centre at the point Q, and we found there, in fact, the

correct expression for the vector at that point (cf. Ex. 9, p. 183).

If we insert obstacles, which we shall assume are opaque and

reflect no waves, in the medium, it is . evident that a certain

portion of the waves emitted by the source will be inter-

cepted and hence that the resultant vector at Q will be given

by a different expression from that already found for the

simple case, where there was no obstruction of the waves

throughout the medium. The first question that arises upon
the insertion of an opaque obstacle, as a screen, in the medium

is, how shall we lay the surface of integration S with respect to

that screen 1 A knowledge of the values of the vector s and
C)7b

along the whole surface of integration chosen, where n denotes the

inner normal to that surface, is now evidently necessary for an

evaluation of the integral of formula (51, V.). This can be had,

if we lay the surface of integration parallel and very near to

that side of the obstructing screen that is turned away from the

source of disturbance, for we can then assume most approximately
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that both s and
^-

vanish at every point on that surface that is

sheltered from the action of the waves or is directly behind the

screen (as seen from the source) and that at all other points on

the same they retain the same values as those assumed by these

quantities, when there is no obstruction; at points not directly

behind the screen the surface of integration can evidently be laid

as best suited for an evaluation of the given integral. This method

of treatment of the obstructing screen and the assumptions embodied

in the same are evidently similar to those employed by Fresnel (cf.

3s
pp. 144-153). The assumption that s and ^ both vanish directly

behind the screen but retain the same values at all other points

as in the case, where there is no obstruction of the waves, will

evidently be realized only, when the obstructing screen or the

aperture in the large opaque screen is large compared with the

wave-length of the waves employed ;
the results obtained on this

assumption will then, in fact, be found to agree with observation

(see below). On the other hand, if the obstructing screen or the

aperture in the large screen is very small, the above assumption
cannot well be maintained, since that portion of the given surface

of integration or wave-front (according to Fresnel) that comes

into consideration will then be so very small (of the dimensions

of the given screen or aperture), that the vanishing of s and
'ds
~- behind such a screen and the assumption of their natural values

in the very next proximity or the assumption of their natural

values in the small aperture and their vanishing in its very next

proximity could not well be realized.* The theory in question is,

therefore, only an approximate one and, like Fresnel's method

employed above, it can be applied only to those problems on diffrac-

tion, where the obstructing screen or the aperture is - not very small,

at least compared with the wave-length.
General Problem on Diffraction : Diffraction on Small Aperture in

Large Opaque Screen. Let us now consider the above theory of

* This could also be stated as follows : When the screen or aperture is very
r")s

small, its edges and the behaviour of s and 7^- at and near the same will alone
on

come into consideration, whereas, when the screen or aperture is large, its

edges will constitute so small a part of the screened or open portion respec-

tively of the surface of integration or wave-front, that the behaviour of these

quantities at and near the edges will not come into consideration. For this reason
^Q

the above assumption on the behaviour of s and ^- can evidently be maintained

only in the latter case.
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diffraction, that based on formula (51, V.) and on the validity of

the above assumption for the values of s and directly behind
on

obstructing bodies and at other points on the surface S (cf. Fig. 19);
that is, let us determine the light vector s at any external point Q,

expressed as integral of a given expression over any surface S

enclosing that point, for the different problems on diffraction. Let

us, first, examine the case, where a large opaque plane screen with

a small aperture is placed between the source of disturbance and the

point of observation Q, which latter shall

lie in the region, to which the diffraction

phenomena sought are confined
;

the

screen shall be so large that it inter-

cepts all the waves from the given
source except those that pass through the

aperture, whereas the dimensions of the

aperture shall be very small compared
with the distances p of the source from

the same on its one side and r of the

point of observation Q on its other, as

indicated in the annexed figure. Let

now the plane of the large obstructing

screen be chosen as */-plane of a system
of rectangular coordinates x, y, z, whose

origin shall be taken so near the given

aperture that the distance of any point

M in the same will be small compared
with the distances ^ and p of the points

and Q from that origin. We denote

the coordinates of the source by xv yv
FIG. 24. z

it
of the point of observation Q by a;

,

y ,
2

,
and of any point M in the aperture by x, y(z = 0). The

distances pv />0> p and r will then be given by the expressions

.(10)

and

By the first two of these relations we can write the last two in the form

and
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hence

and

_^33Sffi)
V ^

r =
Po^

l +-
.(11)

Since now, by assumption, x and y are small compared with pl
and

/o ,

the second terms of the expressions under the square-root signs of these

expressions for p and r will be small compared with their first ones or

unity ;
we obtain, therefore, approximate values for p and r, on develop-

ing these expressions by the binomial theorem according to the

ascending powers of their second terms and on rejecting the terms of

the higher orders of magnitude in x/p^ y/p1
and x/pot y/p respectively ;

if we retain here the terms of only the null, first and second orders

of magnitude in these quantities, we evidently have

^^1 + ^1

and similarly,

r=spJl-^^o+

/i
4

J

.(12)

If we denote the direction-cosines of the vectors pl
and

/o by
a

lt fil and a
, /? respectively, we can write these expressions for

p and r in the form

and

(12A)

Let us now employ formula (51, V.) for an examination of the

given problem. If we assume that the light-vector s at any point
on the surface of integration due to the action of the waves emitted

by the source 0, which shall lie outside that surface, be given by the

expression
a . 2?r ,

s = - sin -r- (vt
-

p)
p A

(cf. formula (52, V.)), where p denotes the distance of that point from

the source, then the light-vector s at any point Q within that

surface will evidently be given, for light-waves, by the expression

cosT ^ ds.......
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(cf. formula (55, V.)), where, however, here ds shall denote any surface-

element of the unscreened portion of the surface of integration chosen

(cf . above) ;
we choose here as surface of integration best suited for

an evaluation of the given integral the :n/-plane. For electric waves

or waves of long wave length, the vector in question would be given

by the more approximate formula (54, V.).

Since now the aperture in the large obstructing screen is, by

assumption, very small compared with the distances p and r, the angles

(n, p) and (n, r) in the expression (13) may be regarded as constant

by the given integration, which is extended only over that aperture ;

for the same reasons p and r may also be regarded as constant by
the given integration, except where they are divided by very
small quantities, as the wave-length A of the light-waves. We
can, therefore, write the above integral (13) for s here in the

form

QT [eos(?i, />)-cos(ft, r)] Icos-y \vt

By formulae (12A), which express p and r (most approximately) in

terms of the coordinates x, y of any point M in the aperture, the

expression to be integrated here can now be written

cos~ \vt
-

9^- cos - - &2 + ty
2
/ 1 1 \

-
(ft + /3Q)y + ^ (- +

-

/? y)
2-n

JJ

where

27TF, x2 + ?/
2
/ 1 1 \

J(fy yj= \

(ttj + a
Q)X + (ft + ft) y

-
fj

2-
( !

j

(14)

2ft 2Po

We can, therefore, write formula (13A) in the form

Q
=^ [cos (n, p)

- cos (n, r)]
j
cos [vt- (pl

+ p )]
cos [f(x, y)] ds

- sn
2. r i

15)

[vt
-

(Pl + Po)]
J

sin [f(x, y)] ds\

Light-Vector Resultant of two Systems of Waves. By formula

(15) we could conceive the light-vector s as due to the mutual action
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of two systems of (elementary) waves emitted from the aperture s,

whose difference in phase is ?r/2 and whose amplitudes are propor-

tional to the integrals

C=\Goa[f(x, y)]ds

.(16)

and S= I sin [/(a;, y)]di

To obtain a simpler form for f(x, y) than the above (14), we lay

the origin of our system of coordinates x, y, z at that point of the

ay-plane, where the same is intersected by the straight line joining

the source and the point of observation Q (cf. Fig. 24) ;
the vectors

pl
and pQ will then lie on one and the same straight line, but they

will be oppositely directed
;
hence

04= -o and ft= -/3

and formula (14) may then be written in the simpler form

f(x, y)=-\(j+ ~) [* +f - K* +P#n

Lastly, we may choose the projection of the line OQ on the a^-plane

as ic-axis of a new system of rectangular coordinates (cf. Fig. 24) ;

/^ will then vanish, and hence f(x, y) assume the form

f(%,y)= - rlr+T
.(17)

= - T i + ) (B'COS*
'

where $ denotes the angle which the vector pl
makes with the 2-axis.

On referring formula (15) to this new uniquely determined system
of coordinates, we can, therefore, write the same in the explicit form

s = A (sin w fsin [~ (- + -} (z
2cos2

</> + y
2
)! ds

J LMPl P,J J
|

........

+ cos w I cos Y (
1~

) (^
2cos2

(/> + y
2
) \ds\\

J LA Vi PQ/

where A =
; [cos (n, p)-cos(n, r}] and <a =

^-[vt- (p1 +/o )]...(18A)

Diffraction on Straight Edge of Large Opaque Screen. Let us, first,

employ formula (18) for an examination of the diffraction on the straight

edge of a large opaque screen; we shall see below that this problem

may be treated as a particular case of the above general one, where

namely the (small) aperture in the large obstructing screen is of quite

arbitrary contour. We choose the straight obstructing edge of the
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screen parallel to the y-axis ;
the screen itself shall extend in the direc-

tion of the positive -axis, from x = x' to x= +00, and its diffracting

edge (parallel to the y-axis) from y = + oo to y = - <x>
,
as indicated in

the annexed figure. Let us now examine the expression (18) for the

light-vector s at any point Q outside the geometrical shadow and in the

plane that passes through the given source and intersects the large

opaque screen in a line, which we shall choose as z-axis, that makes

a right angle with its diffracting edge (cf. Fig. 25). This system of

coordinates is evidently that uniquely determined one chosen above,

the system to which formula (18) has been referred. .

FIG. 25.

We have assumed above in the general development that the aperture
in the large obstructing screen or the unscreened portion of the given
surface of integration be small and that any point of the same be at a

distance from the origin of our system of coordinates that is small

compared with the distances pl
and p of the source and the point of

observation Q respectively from that origin. Here we can now image
the unscreened portion of the given surface of integration or wave-front

(the xy-plane) as divided into two regions, the one extending from the

diffracting edge of the screen to only a short distance within its un-

screened portion (in the direction of the negative x-axis) and the other

from that line of division to x = - GO
;
the former region shall include

the effective portion of the given wave-front or that, which emits the

waves, whose action at the point of observation determines most

approximately the light-vector sought, and the latter its ineffective
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portion or that which contributes only inappreciably to that vector. We
have now seen on p. 153 that the effective portion of any wave-front was

confined alone to the region in the next proximity of the pole (with

respect to the point Q) ;
the dimensions of this region, although large

compared with the wave-length of the waves employed, will always be

small compared with the distances of the source and the point of obser-

vation from the same, and especially here, where these points have been

assumed to be at considerable distance from the screen. Since now the

effective portion of the given wave-front is small compared with the

distances pl
and

/>
and hence any point of the same at a distance

from the given origin that is small compared with those distances,

the above development will evidently hold here, that is, the formulae

already derived may be employed for an examination of the given

problem, and this problem may thus be regarded as a particular case

of the above general one. At the same time, since the integration

over the ineffective portion of the given wave-front or surface of

integration will contribute approximately nothing to the value of the

light-vector sought, the integration itself may be extended not only
over the effective but also over the ineffective portion of the same,
that is, here from x = x' to x = - oo .

"We may, therefore, write the above expression (18) for s here

= ^Msinw sin K( + -
j

(
2 cos2

c + y2
) \dxdy

(*'

TOO r~/i i\ -11 (* /

J
+ COS to | 1 COS

I T (

To evaluate the integrals of this expression for s
, we, first, replace

the variables x and y by the two new ones, v and u, where

hence

and

n*
FT / 1 i \

sin X \
+

/ (
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F
f cosfy (

- + -
} (

2 cos2
</> + f)~\dxdy

J J LA \/>i PQ/
-30 30

i PV' r

=-
27!
-

T\ s-(

cQs<y(-+-- l-oo-ooA V>i fV
where the upper limits ?;' are to be replaced by the expression

PQ
.(20)

On expanding here the sine and the cosine of the angle
-
(v

2 + u2
)

as
2i

^ 9

functions of the sines and cosines of the single angles
- - and ^-,
2 2

we can write these integrals

P Psin f^l +1
*<j>+f)^dxdy

cos Sln

f
. TT^2 p' TTfl

2

I sin -n~du \ cos
-^-a

and s +

1

2/1 1

eos0^f- +
~

)

v

ro
/.,' o "\

. 7TU2 7 r . 7TV2 -, I

sin
-^-a

u sin c?v
j-

V
(21)

Fresnel's Integrals and Cornu's Spiral. The integrals that appear
in formulae (21),

and

fTTU
2

7 f TT^
2

,

cos du = I cos -r-a = ^

f . 7TW2 , f . Tr?;
2
^

I sin -^~au
= sin -~-dv= ^

J 2 J 2
J

.(22)

we denote them by f and
17

are known as "Fresnel's Integrals."

Since now these integrals appear in all problems on diffraction,

a knowledge of the values they assume according to the limits of

integration in question will be indispensable to a further treatment

of the problems on diffraction; before we proceed further with the
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examination of the given problem, let us, therefore, consider the

different properties of and the values assumed by these integrals

according to the different limits of integration chosen. Let us, first,

examine the two fundamental integrals

r TTv2 , r . M2
,

g= \cos-~-dv and 77
= I sin =- dv (22A)

The values of these integrals will evidently vary according to the

value of their upper limits v. Let us now choose these values, and
r),

as coordinates of a system of rectangular coordinates and seek the

curve described by the point , 17 for different values of v. This curve

will pass through the origin of these coordinates, since for v = both and

17 evidently vanish. If we replace the upper limits v by v, the values

assumed by these integrals will evidently differ only in sign from those

of the above (22A), that is, both and rj will change signs only ;
the

curve sought will, therefore, be symmetrical with respect to the origin
=

rj
=

0, since for any and every pair of values
, ^ corresponding to

any positive value of v there will always be a similar pair , -77 that

corresponds to a negative v.

To determine the length of any element ds of the given curve, we
observe that the projections of any such element on the f- and ^-axes

will be - 9

jf. ,f" 7TV2 , TTV2 ,

w =
a| GOS-^-dv

= cos ~n-dv

}>
(23)

and, similarly, drj
= sin~ dv

;

hence ds = *Jd%* + drf = dv

or integrated s = v

provided the curve be measured from the origin, the lower limits zero.

The angle, which the tangent to the curve
, 77 at any point , 77 (v)

makes with the -axis, will evidently be given by the expression

drj 7T#2

tanT= -^ = tan-^-,

hence T=~
(24)

At the origin or for s = v =
(cf. formula (23)) r = 0, that is, the curve

will leave the origin on either side running tangential to the -axis; for

s = v=l, T = 7r/2, that is, the curve will run here parallel to the ry-axis;

it will next run parallel to the -axis for T = TT, that is, for v2 = 2 = s2
,

then again parallel to the ^-axis for T =
-^

or v2 = 3 = s
2
,

etc. (cf .

Fig. 26V
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The radius of curvature p of the curve
, rj

at any point (f, ?/)
will

evidently be given by , , . ,

^ = _^_ = JL = J_
(25)dr Trvdv TTV ITS

(cf. formulae (23) and (24)); that is, the radius of curvature will vary

inversely as the length of the curve s from the origin. The curve

described by the point , 17
on either side of the origin will, therefore,

be one .whose radius of curvature decreases continously, as we recede

from the origin along the same; such a curve is now a spiral or

double spiral; that in question is known as "Cornu's spiral." Each

spiral approaches now a given asymptotic point A or A' (cf. Fig. 26),

closing in more and more on that point as the length of the curve s

from the origin increases, until it finally for s = v = oo reaches that point.

Determination of Coordinates of the Asymptotic Points of Cornu's

Spiral. Let us, next, determine the coordinates of the asymptotic

point A of Cornu's spiral (cf. Fig. 26) ; they are evidently given by
the values of the integrals

=|
= cos --<& and 1^ = I sin~dv............... (26)

To evaluate these integrals, we make use of the integrals

M, ...................................... (27)r

and their product e'^+^dxdy^M2
(28)

We, first, seek the value of this double integral on the assumption
that x and y are the rectangular coordinates of any point P (in the xy-

plane); dxdy will then denote any rectangular surface-element of the

xy-plane. To evaluate this integral, we replace the surface-element

dxdy by the surface-element do bounded on the one hand by any two

vectors r, that subtend the infinitesimal angle d<f> at the origin, and

on the other hand by the segments of arc, intercepted by those

vectors, of any two circles of radii, that differ by the infinitesimal

quantity dr. The area of any such element do will evidently be

do = rdrd<f>.

On replacing the rectangular coordinates x, y by these new ones r

and <j>,
we can write the above double integral in the form
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This integral can now easily be evaluated
;
we find namely, since

J%-V*-|-i-|"
= i

r

and I d(f>
= ->

that

hence ;= (29)

We, next, replace the variable x in integral (27) by a new variable

0, where the following relation shall hold between these two variables :

hence dx =
-y

-~
dv,

where z shall denote the imaginary unit >/ - 1 ; and we have

2

(cf. formula (29)), which gives
"

(30)

We can now write the value of this integral in another form, one,

in which the real and the imaginary parts appear separate. To

accomplish this, we observe that

-
and ,Jt = j=-

=
2xA 2V*

which gives 2i = (1 + z)
2
,

/- 1 + i 1
and hence V*= T=-=j=

V2 \f -i

Eeplace -;==: in formula (30) by this value /=-, and we have
v * v2

(30A)

Since now e
f
~2" = cos -^ + i sin -^-,L L

O
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we can write this integral in the form

f(

. . ,

cos + i sin av = 1+i

Lastly, since both the real and the imaginary parts on the two sides

of any equation must always be equal, it follows from this integral

equation that

and

* 1 1

cos- dv=-

f *,7
!

J

sin --<& =
.(31)

the integrals, whose values were sought.

The coordinates of the asymptotic point A of the spiral described

by the point
, f TT& , r . TTV

2
j

=|
cos

-jj-dv, r/=|
sin ffe,

will, therefore, be .(31A)

(cf. formulae (26)); this point is thus situated on the line bisecting

the right angle between the coordinate-axes and
77.

Construction of Cornu's Spiral. To plot Cornu's spiral, we start at

the origin and lay off the distance s = 0*1 on the -axis (cf. Fig. 26). From

this point we draw a straight line intersecting the ^-axis at the angle

r =~ = *
0-01 =TT 0-005 (*

=
0-1)

(cf. formula (24)), and describe

with this point of intersection as

centre a circle of radius

1 10 ,

/>
=- <*-<H)

(cf. formula (25)); this circle

will pass (most approximately)

through the origin of our co-

ordinates. On this circle we lay

off from the origin the arc of

length s = 0-1
;
at the end of this

arc s = 0*l the given circle will

evidently have the radius of

curvature of the spiral sought at that point of the same, which is at

the distance s = 0*l from the origin measured along the spiral. On

joining this point with the origin (by a curve whose radius of cur-

O4 0-2 0-3 0'4 0-5 0'6 0-7 O 3

FIG. 26.
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vature increases from that of the spiral at the point s = 0'l to
/a
= 00 at

the origin), we obtain the first portion of the given spiral.

To obtain the next portion of the spiral, we continue the curve

from the point s = 0'l of the same, by describing a circle of radius

g
P = -

(s
=
O2), whose centre is to be determined similarly to that of

the first circle, lay off from the end of the first portion of the spiral

already plotted the arc of length s = 0'l on the same and join the end of

this arc with that of the first one by a curve of the radius of curva-

ture in question. Similarly, we can construct the successive portions
of the given spiral.

Evaluation of Fresnel's Integrals. The above method of construct-

ing Cornu's spiral, like the other methods based on the approximate
evaluations of the integrals themselves

(cf.
Exs. 6-9), is evidently only

an approximate one. The values of Fresnel's integrals, as determined

by Gilbert,* are given in the following table :

V
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This table shows that the given integrals pass through a series of

maxima and minima, which become less and less marked as we

approach the asymptote point A. Lommel * has evaluated Fresnel's

integrals to the sixth decimal for the variable (upper limit) z = -~- for

z = 0-l, 0-2, 0-3... 0-9, 1-0, 1-5, 2'0, 2'5...49'5, 50, which correspond to

110 values of v between 0-064 and 5-642.

The Given Problem. Let us now return to the examination of the

above problem on diffraction, which we were obliged to interrupt

on account of the appearance of Fresnel's integrals (cf. formulae (21)),

which we have just investigated.

The integrals of formulae (21), whose limits are - oo and +00 ,
can

evidently be evaluated at once ;
we have namely

r'2
poo

cos
^-

du = 2 1 <

-oo

cos '-^- du = 2 1 cos ^- dw = 1

(cf. formulae (31)), and, similarly,

r.
7TU2 ,

sin
-^-

du = 1

We can, therefore, write formulae (21)

rsin Y(-+-
L*\Pi P (

.(32)

2/1

rr

2/1
irv* F' . TTV*

-2-^-
sm-

and hence formula (19) for SQ

A ( . rp . in?
0=

coS,^ +i^
sm<0LrinT

\Pl Pi)

r(
v'

wv2
, f

1"
. w4Hn

+ cos w I cos -5- dv
-

I

sin-^-tfr
I

[

(33)

*
v. Lommel : Abhandlungen der math.-phys. Classe der kgl. bayr. Akademie der

Wissenschaften, Band 15, Tabelle iii., p. 648.
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This light-vector s
,
like the light-vector s of formula (15), can now

be conceived as due to the mutual action of two systems of (element-

ary) waves, whose difference in phase is ir/2 and whose amplitudes are

A fr . Trt;
2

,

i\{J ^T*2/1 i\
T ( + -) i

Mft /V

^ rr ^s r *&
2/1 ix tJ "TM ^T- + - rt -i

and
,2 - -

vh Po/

The Resultant Intensity. According to the principle of interference

the resultant intensity / produced by the mutual action of two waves,
whose difference in phase is w/2, is now proportional to the sum of the

amplitudes squared of the given single waves (cf. formula (4, IV)).

The resultant intensity / of the two systems of waves, to whose

mutual action the light-vector S
Q

of formula (33) is conceived as due,

will, therefore, be proportional to the expression

frr *&
7 r ^2^T rr *&* r- ^TI

-j

I I sin
-g-

dv + \ cos -Q- dv + II cos -^- dv
-

I sin
-^-

dv
j-

2 cos2
<^)f- + -
V] PG

or, by formula (ISA),

rr . 7T?2 n2 rr ^ ~i
2
i r

r ^
ILJ

sm
~2~ J

+
LJ

cos
ir J }

pr p- to 7

Expression for the Resultant Intensity. Let us now examine the

expression (34) for the intensity. We have now seen on p. 205 that

only those elements of the surface of integration or half-period

elements of the given wave-front come into consideration that are

in the immediate neighbourhood of the pole on that surface or

wave-front with respect to the point of observation Q (see Fig. 25),

which pole has been chosen above as origin of our coordinates

(cf. p. 203 and Fig. 25). We can, therefore, replace most approxi-

mately p by />!
and r by /o

in the coefficient of the above expression
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(34) for /
(cf. also p. 155). This coefficient will then assume the form

fl
2
[cos(K,, ft)-cos(?i, /> )]

2

Moreover, since the origin of our coordinates has been laid on

the line joining the source and the point of observation Q (cf-

Fig. 24), we evidently have

cos(w, ft)
= -

cos(w, pQ)
= cos <,

and the given coefficient will then reduce to the simple form

a2

The expression (34) can thus be written (most approximately)

a2 rrp . ^,7 rp ^2
/prop ' to

l
sm^J +

LI
cos

-r

For the determination of / for waves of long wave-length see Ex. 5

at end of chapter.

Geometrical Interpretation of Expression for Resultant Intensity.

We can now interpret geometrically the integral expression in the

largest brackets of formula (35) for I by means of Cornu's spiral.

For this purpose we denote the coordinates of any two points of

the (Cornu's) spiral of Fig. 26 by , ??
and

', r/, where

and

f
'

7TV*
2

.
("'

. 7TV
2

7= I cos dv, rj
I sin dv

r ?j ' r ?j=
1 cos-^-av, ^ =

1 sm dv

.(36)

The direct distance A between any two such points is evidently

determined by the expression

rP TTV2 C
v

7TV
2 7 rP * 7!"^'~

\

V
' 7!"^

2
J ~T=

|_J

cos
~2~ I

COS
T~

V
J
+
LJ

sm
~T^-J

sm
~2~

v
\00

_rp Trv2 , i2

rp . TV2

=
LJ

cos
"2" J +U

s a

^"
V It

which we can interpret as follows : The sum of the squares of the two

(Fresnel's) integrals
r*' TTV2 r' . vv2

I cos^-dv and I sm-^r-i
J 2 J 2
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can be represented by the square of the direct distance between the

two points of Cornu's spiral (cf. Fig. 26), whose coordinates
, 77 and

', 77'
are determined by the values of the integrals (36).

For v= - oo formula (37) will assume the form

(f
-

,)
2 + (>'

- ^'Y -
[[cos

5?

where x ,, rjA , denote the coordinates of the asymptotic point A' of the

spiral in the quadrant -, -77; this integral expression is now the

one in the largest brackets of formula (35). We thus have

(cf. formula (31)), that is, the intensity at the given point will be

proportional to the square of the direct distance of the point ', //

from the asymptotic point A > =
f)A>=

-
1/2.

Exterior Diffraction Bands. It is evident from the form of the given

(Cornu's) spiral (cf. Fig. 26) that the distance of any point ', 77'
of the

same from the asymptotic point x ,, -rjA , will pass through a series of

maxima and minima, as we recede from the origin,
=

77
=

(cf
=

0),

along the spiral towards the asymptotic point A = VJA
=

1/2 (v'
= cc

),

that is, as the distance x' of the obstructing edge of the given screen

is increased from x' = to x' = QO
; positive values of x' correspond now

to points of observation Q outside the geometrical shadow (cf. Fig. 25).

On the other hand, for negative values of v' or x, which will correspond
to points Q inside the geometrical shadow, the distance of any point

', rj of the spiral will evidently diminish continuously, without passing

through maxima or minima, as we recede from the origin along the

spiral towards the asymptotic point A >
= /

riA >
= -

1/2 (/
= QO

).
These

results, which are confirmed by observation, are similar to those obtained

by the former less exact method (cf. pp. 187, 188).

Approximate Determination of Distribution of Bands. The exact

determination of the position of the maxima and minima of intensity

(outside the geometrical shadow) would require the determination of

the points of the spiral in the quadrant f, 77
that are furthest and nearest

respectively to the asymptotic point A ,
=

rjA,= 1/2 ;
this problem has

been solved in all its details by Lommel.* These points may now be

*"Die Beugungserscheinungen einer kreisrunden Oeffnung und eines kreis-

runden Schirmchens etc.," and "Die Beugungserscheinungen gradlinig begrenzter

Schirme," in the Abhandlungen, der math.-phys. Classe der kgl. bayr. Akademie

der Wissenschaften, pp. 233-329 and pp. 531-664 respectively.
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determined approximately ; approximately they will evidently be the

points of intersection of the given spiral and the straight line bisecting

the quadrants , rj and f,
-

77
of Fig. 26 and passing through the

asymptotic points of both spirals. Since this line cuts the given

spiral approximately orthogonally (cf. Fig. 26), the angle T, which the

tangent to the spiral at any such point makes with the -axis, will

evidently be approximately

for maxima of distance A or intensity I and

for minima, where h = 0, 1, 2,

TTt/
2

By formula (24), T = =- ;

these maxima and minima will, therefore, correspond to the following

values of v' :

and fl'min .

= - +J-

These different values of if correspond now to different positions of

the point of observation Q ;
let us, next, determine if in terms of the

position (with regard to source and screen) of any such point. For this

purpose we assume that the vector from the source to the obstructing

edge of the given screen coincide with the normal to the screen at that

edge; this assumption is evidently consistent with the construction

represented in Fig. 25. Let us denote this shortest distance from

source to screen by a
(cf. Fig. 25). We now continue the vector from

through the obstructing edge of the screen downwards till it meets

the line (screen of observation) drawn through the point Q parallel

to the x-axis at the point R (cf. Fig. 25); this point R marks the

edge of the geometrical shadow on the screen of observation. Let us

denote the distance of the point R from the obstructing edge of the

given screen by b and the distance of the point of observation Q from

R by d. It follows then from Fig. 25 that

a :a + b = x' :d, (40)

and a : pl
= cos

</>.

By formula (20), we have now

v' = x' cos
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Eeplace here x' by its value from formula (40), and we have

ad
v' =

a + b

For points $ near the edge of the geometrical shadow R only
such points come into consideration here

(cf. p. 205) we may now

replace p1 by a and
/> by b most approximately and hence put

We can then write v' most approximately

v'

that is, v' will be directly proportional to the distance d of the point of

observation Q from the edge of the geometrical shadow R.

By formulae (39) maxima and minima of intensity will appear for

the following particular values of v' :

/3~~7Iv mx. = A/ ^ + 4/1 and

Eeplace here v' by its value (41) in terms of the distance d, and

we have

hence

and

hence

On evaluating here the expressions V3/2 + 4/& and V7/2 + 4/& for the

different values of h, h= 0, 1, 2, ..., we find the following values for

the d's :

=^ 1-225,

and d

where

=^2-345,

=^2-739,

x . =^3-082,

n . =p 3-391, =^3-937,

....(42)

These approximate values for the distances of the first maxima and

minima of intensity from the boundary of the geometrical shadow

differ only inappreciably from the exacter ones, found by Lommel;*
* "Die Beugungserscheinungen geradlinig begrenzter Schirme" ; Abhandlungen

der math.-phys. Classe der kgl. bayr. Akademie der Wissenschaften, Band XV.,
Tabelle XXIa, p. 662.
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the latter values for these distances, expressed in terms of the quantity
, K<P

z, where x = y ,
are

4-654, 17-268, 29-840, 42-409,

and 11-015, 23-569, 36-132, 48'698 respectively,

where we have retained only the first three decimals
;
these values

correspond to the following values of d :

^1-217, p2-344, ^3-082, ^3-674,

and ^1-873, ^2-739, ^3-391, ^3-937 respectively.

Intensity of Maxima and Minima. The intensities of the above

maxima and minima will now, by formula (38), be proportional approxi-

mately to the squares of the direct distances of the points of inter-

section of the line AA and the upper (in the quadrant f, ??) (Cornu's)

spiral from the asymptotic point A of the lower spiral. If we choose

the natural intensity as unity, we find,* on measuring these dis-

tances, the following values for the maximum and minimum intensities

in question :

/om. - 1-34, /lmai .

= 1-20, I2max .

= 1-16,

and /on,,, =0-78, /lmin.=0'84 5
/2min.=0'87.

These values also differ only inappreciably from those found by the

exacter method. Lommelf has found the following values for these

intensities :

1-370, 1-199, 1-151,

and 0-778, 0-843, 0-872,

where we have retained only the first three decimals.

Diffraction on Narrow Slit in Large Opaque Screen. Let us,

next, examine the behaviour of the intensity after the passage of

light-waves through a narrow slit in a large opaque screen. We can

now regard the preceding problem as a particular case of the given

one, the slit being conceived in the former as so broad that there is

a diffraction of the waves on its one edge only. The given problem

will, therefore, differ from the preceding one only therein that the

lower limits of integration, instead of being
- GO as in formula (35),

will be x
2 (v2') t the distance of the other edge of the slit from the

origin. On replacing the lower limits - <x> by x
2

'

or v% in the formulae

deduced above, we obtain, therefore, the formulae sought for the given

problem. Formula (38) for the resultant intensity then becomes

/prop, to 2^''-^72 +(V-Vn
'

............. (43)

* Cf. Drude : Lehrbiich der Optik, p. 183.

t Cf. paper cited in footnote, p. 217.
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where /, >//
and >', fj2

'

denote the coordinates of the two points of

Cornu's spiral that are determined by the values of the integrals

and

f"

1

'

7TV2 , f"
1

'

. TTV2 7

cos dv, ^
=J sm-^-dv

rTTlfi
r**'

2
'

TTV^

cos-^-^, >72
/=

|
sin-^-^

(cf. formulae (36)), where

and =

(cf. formula (20)), #/ and #
2

'

denoting the distances of the two edges
of the slit from the given origin, as indicated in Fig. 27. The

intensity at Q will thus vary directly as the square of the direct

distance between the two points j', T^' and 2', ry2
'.

Let now the source be so chosen that the centre of the given slit and

not the (one) diffracting edge of the screen, as in the preceding problem,
be nearest to the same, as indicated in the annexed figure. Since the

Q R

FIG. 27.

origin of our coordinates has been chosen on the line joining the source

and the point of observation Q (cf. p. 203), x^ and #
2

'

will evidently

be opposite in sign for any point Q within the geometrical image, and

of the same sign, either both positive or both negative, for any point

within the geometrical shadow. If we denote the distance of the

source from the centre of the slit by a, the distances of that centre

projected on the line (screen of observation) drawn through the point

of observation Q parallel to the z-axis from the centre of the slit by
b and from the point of observation Q by d and the width of the
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slit itself by 8 (cf. Fig. 27), the following relations will evidently hold

between these distances and the distances x^ and x
2

'

:

and a^-8/2 : d = a:a + b = pl ip-^ + p^

As in the preceding problem, we may now replace pl by a and p

by b, and hence put cos< = l. The values (44) of v^ and v
2 ,

which

correspond to any given point Q, may, therefore, be written most

approximately
2/1

*

By the above relations we can now express o^'
and #

2',
the distances

of the two edges of the slit from the origin, whose position on the

#-axis varies according to that of the point of observation Q chosen, in

terms of the distances a, b, d and 8
;
we evidently find

ad 8 , ,
ad 8

and "-
Replace a^' and a;

2

'

by these values in the expressions (44A) for v^

and < and we have

, _T ad n /2/1
r

v
i
-\_a + b

+
2j VAa ^

.(44B)
,

F ad 8~\ 2/1 IN
and

^-Lsi"iJVi(s
4
-v.

which give the two following simple relations between the #'s :

where p is given by formula (42).

Interpretation of the Relations between the fl"s and 8; Diffusion of

the Waves. We can now interpret the two relations (45) as follows :

For given A, a and b the difference in the distances v^ and v
2

'

(s^ and s
2')

along the given spiral will be directly proportional to the width 8 of the

slit and their sum, v^ + v
2', along the spiral directly proportional to the

distance d of the point of observation Q from the centre of the geo-

metrical shadow. For given 8 the difference in these distances, ?

1

/ - v
2',

along the spiral will, therefore, remain constant for all values of d
;
the

intensity at any point Q, which is proportional to the square of the

direct distance between the two points /, ^ and
2', ^ f ^ne spiral

(cf. formula (43)), will, therefore, depend alone on the curvature of

the given constant segment v^
- v

2
of the spiral. If now the slit

is very narrow, the segment v^
- v

2
will be very short and the in-

tensity will evidently retain approximately one and the same value,
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as we recede from the centre of the geometrical image, where d = 0, to

a considerable distance within the geometrical shadow (cf. Fig. 26).

The screen of observation will, therefore, be illuminated approximately

uniformly, the illumination diminishing very gradually, as we pass

from the centre of the geometrical image into the geometrical shadow,

that is, no marked boundary will be discernible between shadow and

image ;
the waves are then said to be diffused.

Exterior Diffraction Bands. If the width 8 of the slit is increased

to such dimensions that the constant segment #/
-

v% of the spiral,

which is always proportional to 8
(cf. formulae (45)), embraces a com-

paratively long portion of the same, then the intensity will evidently

retain approximately one and the same value within the geometrical

image, but diminish gradually as we pass into the geometrical shadow

(cf. Figs. 26-28) ;
as we pass from geometrical image into shadow, a^'

and x
2

'

(y/ and v
2'), which are always opposite in sign in the former,

will evidently assume one and the same sign in the latter (cf. p. 219).

As we recede further into the geometrical shadow, the intensity will

evidently diminish more rapidly and then less rapidly, until we finally

reach a point Q at the distance d from the centre of the geometrical

image, where the intensity becomes a minimum; the position of this

first minimum will evidently be determined approximately thereby,

that the tangents to the end points of the given segment v^
- v

2

'

of the

spiral run parallel to each other and in the same direction, as indicated

in Fig. 28 below. From this minimum the intensity will evidently

increase first gradually, then rapidly, and finally gradually again, until

it reaches a maximum, whose position will evidently be determined

approximately thereby, that the tangents to the end points of the

given segment v\
-

v% run parallel to each other, but in opposite direc-

tions (cf. Fig. 28 below). The screen of observation will, therefore, be

illuminated approximately uniformly from the centre of the geometrical

image to a certain distance within the geometrical shadow, the illumina-

tion diminishing gradually from the central line towards the shadow,

then the illumination will diminish more rapidly, until it finally reaches

a minimum, and from this point on the screen will exhibit a series of

bright and dark (coloured) bands (cf. pp. 193 and 224 below).

Approximate Determination of Distribution of Bands. Let us now
determine the distances d of the above minima and maxima of intensity

from the centre of the geometrical image. As we have observed above,

the positions of these minima and maxima are determined approximately

thereby, that the tangents to the two end points of the given segment
v
i
~ v

z
run parallel to each other, for the minima in the same direction

and for the maxima in opposite directions
;

this will now evidently be
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the case, when the angles which the tangents to the two end points

of the given segment make with the -axis, differ by 2;r and multiples

of the same for the minima, and by STT, STT, 7-jr, etc., for the maxima
;

the positions of the first minimum and maximum determined in this

manner are represented roughly in the annexed figure. The angle T,

which the tangent to any point , rj of the (Cornu's) spiral makes with

the -axis, is now, by formula (24),

TTt?
5

That the two end points of the given segment v^
-

v% of the spiral be so

FlG.

situated that minima of intensity appear, the following condition must,

therefore, hold :

*i'-'i'-|k
li-Vl)-.

where h= 1, 2, 3,... . Similarly, the following condition will determine

the positions of the maxima :

We can now write these two conditions in the form

and - <)K + <) = 2(1 + 2h),

and hence, on replacing ^'
-

v% and v^ + v
2

'

by their values (45),

and

2/1 1

-(- + =

X\a b
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Lastly, replace here p by its value (42), and we find

Sd = Xbh
i

A+2h f, (46)
and 8d = \o -

as conditions for the appearance of minima and maxima respectively.

On replacing h by 1, 2, 3... in these formulae (46), we find the

following values for the d's :

di min .

= A, rfamln .

= 2 A, ds ffiin .

= 3 A, etc. \

_3 _ 5 _7 L (47)

/

A5
where A = -=- ;

o

that is, the distances of the maxima and minima of intensity from the

centre of the geometrical image will be independent of the distance a

of the source of the disturbance from the slit, but directly proportional

to the distance b of the screen of observation behind the same and to

the wave-length A of the waves employed and indirectly proportional

to the width 8 of the slit, whereas the maxima and minima themselves

or the bright and dark (coloured) bands will be equidistant. The

exacter method for the determination of the positions of these maxima
and minima shows, however, that this last result is only approxim-

ately correct. Lommel * has namely found the following values

for these distances d of maximum intensity in terms of the dis-

tance z, where z = Trd :

2j= 4-493 A, z
2
= 7-726 A, s

s
= 10'904A, s

4
= 14-066 A,

2
5
= 17-221A, 2

6
= 20-371A, *

r
= 23-520 A, 2

8
= 26'666A,

where we have retained only the first three decimals; these values

evidently correspond to the following values of d :

, 2 , 3 , 4 ,

d5T 5-482A, d
6
= 6-485A, ^ = 7'488A, d

s
= 8'490A )'

(

A comparison of the above approximate values (47) for the distances

d with these shows that the former differ only inappreciably from the

latter.

Intensity of Maxima. To find the intensity of any maximum or

minimum, we replace d by its respective value from (47) or (47A) in

formulae (44B), determining thereby the corresponding values of #/

and
2', evaluate the integrals /, ^ and

2', ^ on p. 219 for those

values of v as limits, and then determine by formula (43) and actual

*Cf. paper cited in foot-note, p. 217 : Tabelle IVa, p. 651.
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measurement of the direct distance between the two points /, i^'
and

2'' ^2 f the spiral the intensity sought. The values of these maxima

of intensity, as determined by Lommel, * are

atd =
0, J =l, atdj = l-430A, /

x
= 0-0472,

atd
2
= 2-459A, /

2
= 0'0165, at d

3
= 3'472A, 7

3
= 0'0083,

at d4 = 4-478 A, J4 = 0-0050, ...,

andatd16 =16-497A, 716 = 0'0003(7)

where we have retained only the first four decimals and the natural

intensity has been taken as unity. It is evident from these values that

only a limited number of bands will be observable, for these maxima

decrease very rapidly in intensity, as we recede from the central axis

d = of the geometrical image (cf. p. 193).

Behaviour of Intensity along Central Axis of Image ;
Determination

of Positions of Maxima and Minima on that Axis. It is evident from

formulae (44s) that, for given a and 8, v-^
and v

2

'

will vary along the

central axis d = of the geometrical image according to the distance

b of the point of observation Q on that axis from the centre of the

slit; as this distance b decreases, v^ or v
2

f

will increase in absolute

value, and the direct distance between the two corresponding sym-

metrically situated points fj', ^ and f2', ?72

'

(
-

/, rjj')
of the spiral

will evidently pass through a series of maxima and minima and hence

the respective intensity also. Since now for d = 0, v^
= - v

2',
so that the

straight line joining any two points j', i^' and
-

/,
-

rj^ of the spiral

will always pass through the origin of the same, the points of maximum
and minimum distance from the origin will be determined approxi-

mately by the points of intersection of the spiral and the straight line

AA joining the two asymptotic points and passing through the origin

of the spiral. These points of intersection have now been determined

on p. 216
;
we found namely

%' = A /- + 4h for the maxima
2i

and
v-i'

where ^ = 0, 1, 2... .

Eeplace here v^ by its value for d = from formulae (44B), and

wehave

*Cf. paper cited in foot-note, p. 217 : p. 606.
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which evidently give the following expressions for the b's :

a82
~\

"max.
==

9 . \ ~ /o . OL\ I

.(50)

and

(cf also formula (b) Ex. 4).

Lommel* has now determined by his exacter method the distances

of these maxima and minima from the slit in terms of the quantity y,

which is related to the distance b by the formula

b = 2 _.f

On replacing the /'s by the values J determined by Lommel in this

formula, we find

- S2 + Aa(10-420)'
"l'

h
2max -

~

...(50A)

On comparing these values for the 6's with the approximate ones

obtained by putting h = Q, 1, 2, ... in formulae (50), we observe that

the latter, with the exception of the first maximum, differ only in-

appreciably from the former.

Intensity of Maxima and Minima. The intensities of the above

maxima and minima could evidently be determined in a similar manner

to the preceding ones (48), namely, by formulae (50) or (50A), (49) and

(43) (f2
= ~

i
an(i V = ~ V) and by actual measurement of the direct

distance between the two points /, ^ and -
/,

-^ of the. spiral

thus determined. Lommel
||
has found the following values for these

maxima and minima :

at &0max.(
= -

a\ /Omax .

=
1, at 50min .,

70min.

= 0-0816,

at 6lmax, 7lmax .

= 0-1323, at blmiu, /lmin.

= 0-0463,

at &2max, /2max .

= 0-0698, at 62mtn .,
/2mla.

= 0'0326,

where we have retained only the first four decimals.

*Cf paper cited in foot-note, p. 217, Tabelle Va, p. 652. tCf. ditto, p. 606.

:2A)max. = 0, yOu,in.=ll'479, 2/lmax.
= 16-371, yi min. =23'939,

y-2max.-29-223, yamin. =36-451, y3 max. = 41 -916, y3 mm. =48 '982,

where we have retained only the first three decimals.

Lommel's first maximum appears at the distance b= - a from slit, that is, at

the source O itself, and evidently does not correspond to the first maximum of

formulae (50) ; the latter seems to have been overlooked by Lommel.

|| Cf. paper cited in foot-note, p. 217, Tabelle Va, p. 652.
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Diffraction on a Narrow Screen. Lastly, let us examine the

diffraction of light on its passage by a narrow screen or fine wire.

As above we shall consider the behaviour of the intensity on a large

screen placed parallel to the two edges of the obstructing screen or

wire and at the distance b behind the latter. We denote the breadth

of the obstructing screen by 8 and the distances of its two edges from

the origin of our coordinates by a^' and x
2

f

,
which origin we shall lay

as above on the line joining the source and the point of observation

Q. By formula (35) the intensity / at any point Q on the screen of

observation will then evidently be given by the expression
'

. TTV* , f" . 7TV2

sm lT^ +
J **-T
2

'

Q*i'

7TV
2

, f
X

7TV2 , "I
2
!

OOB
-^-

00+ 1
eos-g-00

OOB
-^-

where v and v
2

'

correspond to the values a^'
and x% respectively of x

(cf. formula (20)).

By Cornu's spiral we can now interpret the (Fresnel's) integrals in

the above expression for the intensity as follows : the first integral

represents the projection on the 7y-axis of the distance A'E^ where E-^

denotes that point of the spiral, whose ^-coordinate is determined by
the value of the integral

r
7TV

sin
-^- dv,

the second integral the projection on the ?/-axis of the distance E%A,
where E

2
denotes the point of the spiral, whose coordinate rj

is deter-

mined by the value of the integral

rsin -5- dv,

and, similarly, the third and fourth or last integrals the projections on

the -axis of those same distances A'E{ and E2
'A respectively, as

indicated in Fig. 29 below. If we denote these four projections by

V> W' Sit &' respectively, we can then write the above expression

for the resultant intensity in the form

/prop, to [fa'+ihO' + fe' + fe')*]................. (51)

If we now lay off the distance E
2
'A at the point E^ of the spiral

and parallel to that direction (cf. Fig. 29), we can interpret the

expression in the large brackets of this formula (51) for the intensity

as the square of the distance A'A thus constructed. The intensity in
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question will, therefore, be proportional to the square of the distance

A'A of the given construction (cf. Fig. 29).

Behaviour of Intensity along Central Axis of Shadow. It follows

now from the above formulae and given geometrical construction that

the region directly behind the small screen or wire will always be

illuminated, for there, d = 0, v^ and v
2

will be equal but opposite in

sign, so that the points E-^ and E
2

'

will be situated symmetrically with

respect to the origin and hence the distances A'E^ and E
2
A equal

and similarly directed (cf. Fig. 29). Along the central axis of the

geometrical shadow the intensity will, therefore, increase gradually but

continuously, without passing through maxima and minima, as we

recede from the obstructing screen.*

FIG. 29.

Interior Diffraction Bands. For large values of v^ and v
2 ,

that is,

for a comparatively broad obstructing screen or directly behind

a (very) narrow screen, the two points E^ and E
2

of the spiral will

be situated near their respective asymptotic points A and A ;
the

distances A'E^ and E
2
'A will, therefore, then differ only inappreciably

from each other in length, as the one point, E^ or E
2 ,

recedes from

or approaches the origin along the spiral, whereby the other point will

approach or recede from the origin respectively (cf. formulae (45)). It

thus follows that marked maxima and minima of intensity will appear,

when the two lines A'E^ and E
2
A run parallel to each other, maxima

when they are similarly directed, and minima when oppositely directed.

Since now in the given case, where
v-^

and v
2

'

are assumed to be large,

*Cf. paper by Lommel cited in foot-note on p. 217, Tab. XVI., p. 658, for

variation of intensity in question.
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the lines A'E^ and E%A will cut the (Cornu's) spiral approximately

orthogonally, the tangents to any two such points E^ and E^ will in

both cases (maxima and minima) run approximately parallel to each

other. It is now evident from the above figure, where the given con-

struction is roughly indicated for a minimum, that maxima of intensity

will appear, when the angles which these tangents make with their

respective (positive and negative) -axes are equal or differ from each

other by %TT or multiples of the same, and minima, when they differ by
odd multiples of TT

;
that is, by formula (24), maxima will appear when

and minima when

where h = Q, 1, 2, ... .

By formulae (45), which evidently hold for the given problem, these

conditions for the maxima and minima can now be written

and 2Sdm in.
=

(2A + l)\b }

which give the following values for the d'& :

i 1 Xb -, ,
3 Xb , 5 Xb

^Omin.
=

<}""' ^imin.
=

Q ~^5 ^2miii.
=

O~l$~'
C '

and d -+ _ti rf =3M eto

^"^
o o o

It follows from these formulae that the distances of the maxima and

minima from the centre of the geometrical shadow will be independent
of the distance a of the source from the obstructing screen, but directly

proportional to the distance b of the screen of observation behind the

latter and to the wave-length X of the waves employed, whereas the

maxima and minima themselves or the bright and dark (coloured) bands

(within the geometrical shadow) will be equidistant. These bands

are thus similar to the diffraction bands produced by a narrow slit

in a large opaque screen (cf. pp. 221-223). It is evident that the

intensity of the given maxima and minima will increase as h in-

creases, that is, as we recede from the central axis of the geometrical

shadow towards its boundaries (cf. Fig. 29 and below) ;
but the above

conditions for the appearance of the bands will evidently hold only

well within the geometrical shadow, that is, for values of d that lie well

within the interval a + b 8 a + b 8

which limiting values for d evidently correspond to the conditions
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^'>0 and v
2
'<0 (cf. formulae (44fi)). We could expect, therefore, to

find only a limited number of diffraction bands of the given type
within the geometrical shadow, and these only in the next proximity of

an obstructing screen of such breadth that
v-^ and v

2

'

assume there large
values (cf. below). This and the above results, which are confirmed by

experiment, also agree comparatively well with the exacter calculations

of Lommel ;

* he has found the following values f for the distances

of the maxima arid minima from the central axis of the geometrical

shadow in terms of the quantity
27rS

'-Si*-*
and the corresponding values for the intensities :

(1) At the distance y = -r--- -j
=

3, \ which corresponds to the value

o =

from the obstructing screen.

, 8
r

Z. d YT- /.
A6
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(3) At the distance y = 9 or b =
_g2 {-Afl(5-730V

1-5247 0-4855 0-0003 min.

TT 1-0000 0-0142 max.

4-5334 1-443 0-0036 min.

2?r 2-000 0-0250 max.

7-4102 2-359 0*0163 min.

STT 3-000 0-0601 max.

10-0687 3-206 0-0571 min.

12-4745 3-972 0-1477 (28) max.

47r 4-000 0-1477 (13) min.

And (4) at the distance y= 12 or b= _ g2 +^ (7
.

640)
-

1-5426 0-4911 0-0001 min.

TT 1-0000 0-0076 max.

4-6103 1-468 0-0011 min.

27r 2-000 0-0109 max.

7-6163 2-425 0-0045 min.

3;r 3-000 0-0200 max.

10-4953 3-342 0-0150 min.

4?r 4-000 0-0450 max.,

where we have retained only the first four decimals.

We observe that the results obtained above by our approximate
method agree comparatively well with these exacter ones of Lommel,

especially as we approach the obstructing screen, that is, as y increases

in value (cf.
values of z for y = 12).

Frauenhofer's Diffraction Phenomena. Frauenhofer's phenomena of

diffraction are known as those that appear, when both source of

disturbance and screen of observation are removed to infinite distance

from the diffracting screen. To obtain these phenomena, we place the

source to be employed at the focus of an ordinary lens, so that the

waves emerging from the same will be propagated along parallel lines,

and observe the (light) effect on any plane parallel to the obstructing

screen and behind it by means of a telescope adjusted at infinite

distance. Frauenhofer's diffraction phenomena are evidently a

particular case of Fresnel's and can thus be deduced from his (Fresnel's)

formulae, if we put there pl
= pQ

= oo . Let us first establish these

formulae and then apply them to the various problems on diffraction.

For pl
= p()

=<x) formula (14) for/(aj, y) will assume the form

f(x, y)
=
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t)

(<h + a
o) and v = --(ft + )3 ),

............... (53A)

and hence formula (15) for the light-vector s the form

S =A \ COS^K -
(Pi + Po)] I COS (fJiX + V^)<fe

fe r
- (54)

-
sin^- [vt

-
(p1 + PO)] I sin (px + vy)ds

where ^ is given by formulae (ISA) and the integration is to be

extended over the aperture s in the diffracting screen.

According to the principle of superposition the intensity 7 pro-

duced by any light-vector of the form (54) is now proportional to the

expression

A 2U I cos (px + vy)ds + I sin (/AX + vy)ds \ prop, to 7, (55)

or ^ 2
(C

2 + S2
)prop. to 7, }

where C= I cos (ftx + vy)ds and S= I sin (px + vy)ds i

(cf. p. 213). If we lay the origin of our coordinates at any point of

the aperture s (cf. also p. 203) and place the telescope parallel to the

direction of propagation of the incident waves, then not only a
x
and

a but also /^ and /3Q
will evidently differ from each other only in

sign (cf. Fig. 24), and hence the quantities p and v of formulae

(53A) vanish at all points in the (small) aperture. If we denote

the intensity in this particular position of the telescope by 7', the

above general formula (55) will evidently give

/'
A*& prop, to 7', hence A* prop, to

-^
.............. (55B)

where s denotes the area of the given aperture. By means of this

formula for the determination of the constant A, we can now write

the general formula (55) for 7, when the telescope (point of observa-

tion) makes an angle with the direction of propagation of the incident

waves, in the form

. ...(56)

Diffraction on Rectangular Aperture. Let us, first, apply formula

(56) to the case, where the aperture s has the form of a rectangle. For

this purpose we choose the centre of the rectangle as origin of our

coordinates and lay the x and ^/-axes parallel to its two sides, whose



232 ELECTROMAGNETIC THEORY OF LIGHT.

lengths we shall denote by a and b respectively. Formula (56) will

then assume the form

SL A

h
j sin(/io;+vyXa%J |,

..(57)

where the integration is to be extended over the rectangle ab only.

For small rectangular apertures x and y will be small, and hence

sin(/>t# + vy) approximately vanish at all points of the same. Here we

can, therefore, reject the second integral of this expression (57) for

/ in comparison to the first, and we have most approximately
a b

I
1 r r2 rz -12

I=
ab\

ws(w + vy}dxdy\, (57A)

b

"2 ~2-

which we can evaluate as follows :

/

-

= -r\ I dx\ (cosfJiXcosvy-smfjLXsmvy)dy\

I"
2"!cos fia; sn vy sn /x# cos vy

"

2
"

2

hence J= /'

This expression for / will now vanish, when either of its last two

factors vanishes, that is, when

Or
-9-

= ^, 27T, STT, ...
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If the diffracting screen is so placed that the direction of propagation
of the incident waves is normal to the same, then a

l
=

/3l
= and the

intensity / in any direction a
, /3Q can be observed at that point of the

focal plane in the object glass of the telescope, when placed parallel to

the incident waves, whose coordinates are

z'=/a and /=//5 , ....(60)

where / denotes the focal distance of the object glass and the co-

ordinates x', y' are taken parallel to the coordinates
a:, y (a, 6) and

their origin at the focus of the object glass.

Replace x' and y' by their values (60) in formulae (53A), and we have

2?r x' , , 27T y't= ' and ""

FIG. 30.

By formulae (59) the intensity I will, therefore, vanish, when

or T = T !

that is, for the following values of x' and y' :

=, or /= .(61)

It follows from these formulae that the focal plane of the object

glass will exhibit two series of dark parallel bands, the one parallel to

the x' (a) axis and the other to the y' (b) axis
;

these bands are

indicated roughly in the above figure by the dotted white lines.
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The bands of each series will evidently be equidistant, except at the

focus of the object glass and along its focal axes x' and ?/', where

the distance between the first dark band on the one side of either

focal axis and that on its other will be double the distance between

the other bands of the respective series; this follows, since the

expressions
. MO, . vb
sm

2
and

"2

do not vanish for
//,
= v = 0, but evidently assume each the value unity.

With the exception of these maxima of intensity in place of minima,

the two series of dark parallel bands will form a system of small

equal rectangles similar to the rectangular aperture but turned through
90 (cf. Fig. 30); that these rectangles are turned through 90 is

evident from the above expressions (61) for x' and y'.

Aside from the maxima of intensity at the focus of the object glass

and along its focal axes, other less brilliant maxima will evidently

appear at the centres of the small rectangles formed by the two

series of dark equidistant bands, that is, for the values of x' and y'

determined by the relations

IM ZTTX'a 7T 37T m 4. IN
""

* _ 1 9 3
~2
=

T72
=

2' -2>---
=

( 2/i + 1
)2>

/i -- 1
> + *>-

and ^=?/| =i'T" <2*+l)j*=l,2, 3,...;

the maximum at any such point a/, y' will, by formula (58), be given

by the expression

Along either focal axis, that is, for n = or v = 0, the corresponding

factor in the expression (58) for / will assume the value unity, and

hence the maximum intensity itself the value

or t'- ...............(62A)

At the focus of the object glass /=/' (cf. p. 231).

Since the maxima at the focus and along the focal axes are

evidently appreciably brighter than the other maxima, determined

by formula (62) the intensity of the maxima is indicated roughly

in Fig. 30 by the size of the white rectangles the general effect or



DIFFRACTION. 235

pattern produced in the focal plane of the object glass will be a bright
cross parallel to the sides of the given aperture and with its centre at

focus (cf. Fig. 30).

Diffraction on Narrow Slit. If we replace the rectangular aperture

ab in the preceding problem by a narrow slit of width a and length
b = oo

,
the above formula (58) for / will evidently reduce to

.(63)

If the diffracting screen is so placed that the direction of propagation

of the incident waves is normal to it, then

,=A=o,
and hence by formulae (53A)

27T 27T .

^ = T a =T sm ^ (
v =

)'

where < denotes the "angle of diffraction," that is, the angle, which

the vector from the centre of the slit to the point of observation

in the focal plane makes with the direction of propagation of the

incident waves. By formula (58) the intensity at any point (<) can

thus be written

/will, therefore, vanish, when

ysin<= hir,h=l, 2, 3...,

U
hence sin0= ,

a

that is, we obtain here a single series (cf . Ex. 1 2 at end of chapter) of

dark equidistant bands parallel to the edge b of the slit. If a<A,
then sin

<f>
will be larger than unity for all integers A, that is, there

will be no angle <, for which / will vanish, and the waves will be

diffused (cf. p. 221).

Diffraction produced by a Number of Equal Apertures. Let us, next,

examine the (Frauenhofer's) diffraction pattern (source and observation

screen at infinite distance) that is produced by several small equal

apertures or holes, as pin holes, in a large opaque screen. We denote

the coordinates of the centres of the apertures or of points similarly
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situated in the same, referred to any given system of rectangular
coordinates x'y', by x^y^ Je

2'y2

'

e*c., and the coordinates of any other

point in any aperture i, referred to a system of coordinates parallel to

the system x'y' and with origin at the centre of or at the point chosen

in that aperture (z/y/), by x, y ;
the origin and axes of the system

of coordinates x'y' shall be so chosen in the obstructing screen as

best suited for the treatment of the problem in question. The co-

ordinates of any point in any aperture i referred to the coordinates

x'y' will then be
x! + x and y- + y.

The resultant intensity / at any point of the object glass will then,

by formula (55A), be given by the expression

/prop, to

where C=2 1 1
cos

[f* (
x

i + x
) + vW +

.(64)

where the integration is to be extended over any aperture i and the

summation over all the apertures in the screen. Since this integra-

tion and summation are evidently entirely independent of each other,

we can, therefore, write C and S in the form

cos /* + vy cos

sin
(fJiXi + vyl) sin (fjx + vy)]dxdy

= cos

- sin

and, similarly,

S= sin ^ + v cos

i + v
lJi}

\ \

cos (^x + vy}dxdy

i + vy?)\ sin (px + vy)dxdy,

t + vy*}
\ \

l + vg!)\ \ sin (nx + vy) dxdy,+ cos

or C= c'c s's and S= s'c + c's,

where c' =^ cos (/xx/ + vyl\ 6/==S sin (/

fV fV
.......

(
65

)

c = 1 1 cos (px + 1^)c?^, s= 1 1 sin (px + vy) dxdy

The above formula for / can therefore be written

/prop, to ^ 2
[(c'c-s's)

2 + (s'c4- c
's)

2
]
= ^ 2

(c'
2 + s'

2
)(c

2 + s
2
)
....... (66)
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This expression for /for several apertures differs now from that (55A)
for a single aperture only in its coefficient

(c'
2 + s'

2
); it thus follows

that the intensity in the former case will be
(c'

2 + s'
2
) times that in

the latter, whereas the expression itself will vanish at the same points
in both cases, that is, the position of the dark bands of a single

aperture will not be altered, when that aperture is replaced by
several such (equal) apertures.

Let us now examine the coefficient
(c'

2 + s'
2
)
in formula (66) ;

for this

purpose we write it in the form
'2 =2 cos2

(/^/ + vy!) +222 cos (/^/ + ^>os(^
i i k

+2 sin2 (px! + vy!} + 222 sin(^ + v^') sin

where i=I, 2, ...n, &=1, 2, ...%, (&<i),

where n denotes the number of apertures in the obstructing screen,

hence

If there are many apertures in the screen and these are irregularly

distributed over the same, the second term of this expression will

vanish when compared with the first, since its different members will

then assume values that lie irregularly but in mean equally distributed

between + 2 and - 2 and hence will approximately cancel one another.

In this case the intensity at any point will, therefore, be approximately
%-times that produced by a single aperture, that is, it will be propor-
tional to the number of apertures in the screen. On the other hand, if

the apertures are distributed regularly or according to any law, the

second term of the given expression will not, in general, vanish, when

compared with the first, but it will assume a finite value determined

by the law of distribution chosen. Take, for example, the simple
case of two equal apertures at the distance d apart ;

if we choose the

line joining them (their centres) as ic'-axis and lay the origin of our

coordinates x'y' in one of the apertures, we can then put

< =
2/i'
=

0, < =
d, y2

' = 0;

the quantities c' and s' of formulae (65) will then assume the simple form

c' = 1 + cos {Jid, s' = sin pd,

and hence the coefficient c'
2 + s'

2 the form

that, in which formula (67) is written. It is evident that the second

term of this expression for the given coefficient cannot be neglected in

comparison to the first.



238 ELECTROMAGNETIC THEORY OF LIGHT.

We can also write the coefficient c'
2 + s'

2 here in the form

2

It will thus evidently vanish, when

l*d
=

(2h + l)ir, h-l,2, 3,...,

that is, for those values of p(x) that are determined by this relation.

The given diffraction pattern will, therefore, exhibit a third series of

equidistant dark bands running at right angles to the line joining the

two apertures in addition to the two series of dark bands produced

by the single (rectangular) aperture (cf. formulae (56) and (66)).

For another example, where the second term of the general expres-

sion (67) for the coefficient c
2

' + s
2

'

cannot be rejected, see Ex. 13 at

end of chapter.

Babinet's Principle. Let us now compare the diffraction pattern

produced by a small screen s
x
with any number of very small apertures

with that produced by its so-called
"
complementary

"
screen s

2
or that

formed by the apertures of the former as opaque portions, the opaque

portions of the former becoming the transparent ones or apertures in

the latter. The intensity /j at any point behind the screen s
1
is now,

by formula (55A), proportional to the expression (7
1
2 + *S'

1
2

,
where the

integrals C^ and ^ (cf. also formulae (65)) are to be extended over the

apertures in that screen
; similarly the intensity J

2
behind the com-

plementary screen s
2
will be proportional to the expression 2

2 + S
2
2
,

where the integrations are to be extended over its transparent portions.

If now the small screen s
x
or s

2
is replaced by a single aperture, the

intensity 7 behind it will evidently be proportional to the expression

(7
2 + $

*
2
,
where the integrals C and S

Q
are to be extended over the

single aperture previously occupied by the screens s
l

or s
2 ;

this

surface of integration can now be replaced by the transparent portions

of both screens together, and we can thus write / in the form

/oProp. to(cl + c^+(sl+ s^,
where Cv C

2
and S

19
S

2
are the integrals employed above.

Outside the geometrical image, that is, within the region of the

diffraction pattern proper cast by either screen Sj or s
2,
/ will evidently

vanish (cf. p. 193), and hence

(Cl + CJ'+ (S1 +SJ> = 0.

This condition can now be satisfied only when

^=-02 and ^=-3,;
in which case A =

^2.................................... (68)

In this formula is embodied Babinet's principle, which we can state
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as follows :

" The intensity at all points of the diffraction pattern

proper will be the same for the complementary screen as for the screen

itself." According to this principle the diffraction pattern produced

by any number of arbitrarily situated small screens of equal size

will be the same as that produced by the same number of similar and

similarly situated apertures of that size in a large screen, which

problem has just been treated above.

Diffraction Gratings and their Patterns. An opaque screen with a

system of very narrow, equal and equidistant rectangular apertures

or slits is called a "grating" or "diffraction grating." Diffraction

gratings are usually formed by tracing a system of parallel equidistant

straight lines on a glass plate with a diamond
;
these lines act like a

system of narrow opaque screens, reflecting back the incident waves

in all directions without allowing any to pass through, whereas the

transparent spaces or strips between the lines allow the waves free

transmission through the glass; these gratings are thus known as

"reflection gratings." Let us now consider the diffraction pattern

produced by such a grating; the given problem is evidently a par-

ticular case of the above general one, where we had a system of

arbitrarily situated apertures of equal size in a large opaque screen.

For gratings the above general formulae will evidently assume a much

simpler form : the system of coordinates x', y' can evidently be so chosen

that the coordinates x^y^, x^2',...
of given points in the different

transparent strips of the grating may be written

#/ = 0, x
2

' =
d, x

3

' = 2d, etc.,

and y1

/ = y2

' = y8
/ =s ...=0,

where d, the so-called "
grating constant," denotes the distance between

those points. By formulae (65) the quantities c' and s' will then

assume the form

c' = 1 + cos [Ml + cos 2/zc? + cos 3/jid + . . . ~\

s' = sin fjd + sin 2^d + sin 3pd + . . .
J

To determine the coefficient c'
2 + s'

2 in the expression (66) for the

resultant intensity, we write it in the form

where i is the imaginary unit ^/-l, replace here c' and s' by their

values (69), and we have

c''
2 + s'

2 =
{
1 + (cos pd + i sin pd) + (cos 2/xd + i sin 2fj.d) + ...

x
{ 1 -j- (cos fjd-i sin fid) + (cos 2/xe?

- i sin 2fjd) + ...

+ [COS(TI-
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where n denotes the number of transparent strips in the given grating,
hence

2 - (cos %/j^ + i sin ft//,^)
-

(cos n^d - i sin ?2/

2 - (cos /xrf + i sin /^)
-

(cos pd-i sin /*d

1 - cos nd

By formula (66) the resultant intensity / at any point of the given
diffraction pattern will, therefore, be given by the expression

which, by formula (63), can evidently be written in the form

(70)

where I denotes the intensity at the centre of the diffraction pattern

produced by a single narrow slit of breadth a, here the breadth of the

narrow transparent strips of the given grating.

We can now interpret the expression (70) for / as follows : its first

two factors represent the diffraction pattern produced by a single

narrow slit of breadth a (cf. formula (63)), whereas its last factor will

vanish, when

the diffraction pattern produced by the given grating will, therefore,

be that of the narrow slit with its bright bands traversed by a

series of dark bands or lines, whose positions are determined by
the following values of /u :

2?r 4rr 6?r

ft- *". ^"il""--
These bands evidently run parallel to one another and at right angles

to the transparent strips or grooves of the grating, and are also equi-

distant. The greater the number n of the grooves, the closer together
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are these bands. It is also evident that the intensities of the inter-

mediate maxima will, in general, be smaller than those of the maxima
of the single slit. On the other hand, we obtain maxima of much

greater intensity than those of the single slit at those points (lines)

of the diffraction pattern, where ^r-
=

Trh, for then the last factor of
A

the expression (70) for / will evidently assume the value %2
,
and

hence the resultant intensity be n2 times that of the single slit. For

large values of n these bright maxima will alone be observable, the

intermediate ones being so much fainter and closer together that they
will escape observation.

It is now possible that for given large values of h the positions of

some of the bright bands determined by the values
/*,
= ^-r- will coincide

with some of those of the dark bands in the pattern produced by the

single slit and determined by the values p = -- ;
in this particular

Cb

case the second factor of the expression (70) for / will now vanish and

hence / itself
;
for such values of

//,
these bright bands will not, there-

fore, appear, but will be replaced by dark ones. The condition for

the appearance of these dark bands is evidently that the breadth a

of the transparent strips and the grating constant d stand in a rational

ratio to each other. For reflecting gratings it is easy to show that

these dark bands, provided they appear, will be separated from one

another by a considerable number of bright ones, for replace the

breadth a of the transparent strips by that b of the fine grooves of

the grating, as allowed by Babinet's principle, and the distance between

two such consecutive dark bands will be given by

where i and k are integers and b is a small quantity compared with

the grating constant d, whereas the distance between two con-

secutive bright bands will be given by

27T

*-ft-ir
As we recede from the centre of the diffraction pattern, we encounter,

therefore, a (great) number of equidistant and equally bright bands,

before we reach the first dark band of the series in question.

If the grating is so placed that the incident waves strike it at right
o

angles, then
/*
= sin

</>,A

where < denotes the angle of diffraction (cf. p. 235), and the positions

Q
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of the bright bands, whose intensities are n2 times those produced by
the single slit, will be determined by

hence sin
<j>
= -T-,

ct

,, ,
. X 2X 3A

that is, 8in.<p1
= T > sm<p2

=
4-, sin <pg

= p ... .

The Diffraction Spectra of White Light. It follows from the last

relations that the bright bands, whose intensities are n2 times those

produced by the single slit, will be equidistant, at least, for small values

of
</>,

where sin
<f>

can be replaced by <f> itself, and that the diffraction

angle < will then be directly proportional to the wave-length A of

the waves employed and indirectly proportional to the grating constant

d. If we let white light pass through a diffraction grating, the waves

of different wave-length or colour contained in it will, therefore, all

be diffracted according to their wave-length, and thus produce spectra ;

these spectra are, therefore, known as " normal
"

ones, to distinguish

them from the refraction spectra formed by glass prisms. Of these

the first (h
=

I) or so-called "spectrum of the first order" will be

absolutely pure, that is, there will be no overlapping of the waves of

different colour in it, the second (h
=

2) or "spectrum of the second

order" will be only partially pure, whereas that of the third order

(h
=

3) will include the red rays of the further end of the second

spectrum overlapping its own violet rays; as we continue to recede

from the centre of the pattern, the overlapping of the waves of

different colour from the different spectra proper will evidently

increase and the spectra themselves thus become less and less pure.

Sommerfeld's Theory of Diffraction; Diffraction on Straight Edge

of Large Reflecting Screen. Fresnel's modified theory of diffraction

was based on the assumption that the light-vector s vanished directly

behind opaque bodies placed in the course of the waves and assumed

its natural value in all regions that were illuminated directly from

the source (cf. p. 199); as this assumption is now only approximately

realized, the given theory can be regarded as only an approximate

one, except at short distances from the obstructing body and its

geometrical shadow (cf. assumption made on p. 200), as we shall

see below. A more rigorous treatment of, at least, one problem on

diffraction, that on the straight edge of a large screen, has now been

effected by Sommerfeld
;

* his treatment of this problem enables us to

* Math. Annalen, Band 47, p. 317, 1895.
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examine the behaviour of the light-vector not only in the neighbour-

hood of the geometrical shadow but at any distance from it.

Sommerfeld starts from the differential equation for the light-vector

s at any point

(cf. formula (48, V)) and seeks a solution for the same, which shall

satisfy the surface-conditions on the obstructing screen. For simplicity

let us assume that the source of light be an infinitely long straight

line parallel to the obstructing edge of the screen, which we shall

choose as y-axis of a system of rectangular coordinates; the a^axis

shall lie in the obstructing screen and the positive 2-axis be directed

away from the source 0, as indicated in the annexed figure. We
denote the angle, which the direction of propagation of the waves

from the source makes with the z-axis, by <'
(cf. Fig. 31). The

Region of

unobstructed

FIG. 31.

light-vector s at any point Q will then evidently be a function only
of x and 2, that is, it will be defined by the differential equation

.(7U)

or, if we replace the rectangular coordinates x, z by the polars r, <j>,

where x r cos
<j>

z = r sin
</>

(cf. Fig. 31), by

5!f =V2^ I?? I.5M
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Sommerfeld now assumes that the waves that strike the obstructing

screen are all reflected and not, as assumed above by Fresnel, absorbed.

There will then be three characteristic regions, instead of two as above,

that will come into consideration here, the region of the geometrical

shadow, that of the reflected waves and that of unobstructed pro-

pagation, as indicated in Fig. 31. The surface-conditions on such a

(highly polished metallic) screen are, as we shall see in Chapters VII.

and VIII. (cf. also below),
* = 0, (73)

when the incident waves are polarized at right angles to the edge

of the obstructing screen, and

!=<>>

when they are polarized parallel to that edge.

A solution of the differential equation (72), which will also satisfy

these surface-conditions, is now

1 _L i j^
nvt

( fer _i![l
2

. , (V -i ")

s = a e *
-I c~*y| e 2 dv + e'^'i e 2 dv\-. . .,.(75)

2 1 J J J

where y = ^cos(^> -</>'), y/as-r- cos(^+ ^'j
j

s?.i.

k

F,- I- (76)

and the minus-sign before the second or last integral is to be chosen for

the surface-condition (73) and the plus sign for the condition (74).

Solution for Light-Vector in Form of Complex Quantity ; Expression

for Intensity. The solution (75) for the light vector s is a complex

quantity of the form

.

+ asm

The physical meaning of such a solution is now to be sought either

in its real part or in the real factor of its imaginary one.

The intensity / at any point Q produced by either of these physical

expressions or solutions for s will now, by formula (4, IV.), be pro-

portional to the expression

prop, to /.
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We also obtain this expression for /, on multiplying the given solution

(75) expressed in the above complex form by its conjugate complex

quantity
_ . 2irvt

A-iSe~'~
thus

.2irvt _ . 2nvt

(A+iB)e^.(A-iB)e~*~*~ = A'2 + B*vrop.toI, ........ (77)

which can be interpreted as follows :

" When the solution for the light-

vector s is a complex quantity or expression, the resultant intensity

will be proportional to the product of that quantity and its conjugate

complex quantity."

Confirmation of given Solution. We can confirm that the expression

(75) for s is a solution of the differential equation (72), on replacing

there s by that expression and performing the differentiations

indicated. To confirm that the surface condition (73) is fulfilled, we

put <f>
= Q and 2?r in the respective solution (75) for s, and we have,

since then 7 = 7' and o- = o-',

-j
,

. lirct /
/g. . nv% /^ . 7ry2 >.

s = aiV * J e-*y\ a a <fo--*H e
*

* dvl = Q.

To confirm that the other surface condition (74) is fulfilled, we first

3.9
form ^- we have ~ ~ ~

c)z' 3s 3s Vr 3s <

since now f2 = x2 + z2 and
<f>
= arctan z/x (cf . the above relations between

oj,
z and r, <f>),

we have

*d<f> 9 , x=
(arctan ^) =

which expressions evidently reduce to the following on the obstructing

screen, that is, for < = and 2?r or z = :

-dr , 3 1 1

^- = and -^-
= - = -.

02 30 x r

The above differential quotient will, therefore, assume the following

particular form on the obstructing screen :
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Replace here s by its value (75) for the given surface-condition, and

we have

r

or, on replacing the y's and the o-'s by their values (76) and performing

the differentiation indicated,

,
,7 N

.

I/WI

where C= - a e *

f -i
and f(v) =\e

2 dv.

On the obstructing screen, < = or 2-n-, the second and last terms

of this expression for will now cancel one another, since the upper

limits of the function f(v) in both terms then assume one and the

same value, whereas their coefficients differ only in sign. We can

thus write the expression for ^ in the form

where v
l
=
A/-ysin ^(<- $'), and

2
=

/y-ysin

or, since

3#!_ /Srcos J(<- <') 3#
2 _

and ^r /( - oo )
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ass n f -i^costt-*') l8r cos i(< -<') 9
- =

^|^ VT~ ~^ si/
8r cos

I

which on the obstructing screen, < = or 2?r, will evidently assume

the form

-fis ( -i cos*' /8rcofl<f>'/2

ST

2 r
/8r

-Vx
8r .

as maintained above.

Geometrical Form of Expression for Light-Vector. Put

-?- 7TV* . TTfl
2

e 2 = cos -^
i sin

in formula (75), and we have

. Tfo- 7T^, .f- . irtf ,-\ }~^\\ cos-^-dv-i\ sm dv \

-co -' I ..... (78)

'ff
17

'

T2j f
a/

~*v
cos-^-av-t\

ssm

(79)

where
, T; and f, T/' denote the projections on the f and ^ axes of

the vectors A'E and ^4'J?' respectively from the asymptotic point A
of Cornu's spiral (cf. Figs. 26 and 29) to those points E and E' of the

same, whose coordinates are determined by the values of Fresnel's

fundamental integrals (22A), whose upper limits are o- and <r' respec-

tively and lower ones zero (cf. also p. 226).

Approximate Expression for Intensity within Image near Boundary
of Geometrical Shadow. Let us now examine the expression (78)

or (79) for s at any point of the region <'<<<7r; here

and hence, by formulae (76), o- always positive and a-' always negative ;

for waves of short wave-length A, as those of light, o- will thus assume

large positive values and a-' (very) large negative ones at finite distances

? from the edge of the obstructing screen. The last two integrals of

formula (78) or the projections f, rf of the vector A'E' of formula (79)
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will, therefore, be (very) small compared with the values assumed

by the first two integrals or the projections f, 77 of the vector A'E, so

that we can write the expression (79) for s here most approximately

s = a e * e~
*?(

-
irj), (80)

and hence, by formula (77), the resultant intensity /

f 1+* j
2irvt vlf 1 -i i^vt

C\
1 prop, to a, & A. e~^(^-it]} a^e A. e^^ + i-rj) ,

a? a2
o

prop, to ^(2 + r)

2
)
=A'E (81)

Comparison of Sommerfeld's Expression (81) with Fresnel's. Let us

now compare the expression (81) for /with that obtained by Fresnel's

(modified) method for the particular case, where the source of disturb-

ance is at considerable (infinite) distance from the obstructing screen
;

here Fresnel's formula (38) can evidently be written

/prop, to
2t(+s)

+
(*

+Vrj*f> -<
82)

where, however, the point E has the coordinates
', rf determined by

the values of the (Fresnel's) integrals, whose upper limits v' are given

by formula (41) and lower ones are zero; formula (41) will now assume

here the particular form

'"S/fc (83)

The distance d of the point of observation from the boundary of the

geometrical shadow will evidently be given here, that is, in terms

of the quantities employed in Fig. 31, by r sin
(< -</>'), where

(</>-</>')

is the angle the vector r makes with the direction of propagation of the

incident waves (cf. Fig. 31). On the other hand, since formula (83) for

v' holds only in the next proximity of the boundary of the geometrical

shadow (cf. p. 200), we may replace there b by r. We can, therefore,

write v' most approximately

m r sin
(<

-
</>')

= sin
(<

- #)

^), ...................... (84)

or, since here the angle (</> <') is small, most approximately

^^ sin 1(4, -</>'), ..................... (84A)

which is Sommerfeld's expression for a- (cf. formulae (76)). It thus
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follows that the expression (82) for / obtained by Fresnel's method,
but which holds only in the neighbourhood of the boundary of the

geometrical shadow, will differ only infinitesimally from that (81)

determined by Sommerfeld's method, at least, when the source of

disturbance is at considerable distance from the obstructing screen.

The value (82) determined by the former method will evidently be

somewhat smaller than that (81) found by Sommerfeld.

General Expression for Intensity. The approximate formula (80)

for s and (81) for J will also hold in the region of unobstructed pro-

pagation, <'< < < 2?r - <'
(cf. also Ex. 14), but in the regions of the

geometrical shadow and the reflected waves we shall be obliged to

employ the explicit expression (79) for s, since the last two integrals

of formula (78) will evidently assume finite values in those regions.

In these regions the light-vector will, therefore, be given by formula

(79), and hence, by formula (77), the resultant intensity / by
1 4.V '**

......(85)
( l-i i

\
aV e

which can be written in the form

x

/prop, to -
(86)

prop. to~[AE + AE'+2A'E.A'E'cos(7 -y + x)] .......(86A)
2t

(cf. Ex. 16 at end of chapter), where x denotes the angle included

between the two vectors A'E and A'E' of Cornu's spiral (cf. Fig. 29).

This formula states that the resultant intensity is proportional to the

square of the geometrical difference or sum, according as the incident

waves are polarized at right angles or parallel to the edge of the

obstructing screen, of two vectors A'E and A'E' in Cornu's spiral,

which make the angle x with one another.

Approximate Expression for Intensity within Geometrical Shadow

at considerable Distance from its Boundary. Let us now examine

the expression (86A) for 1 at any point within the geometrical shadow

that is at considerable distance from the boundary of the same, that

is, for values of
<f>

that are considerably smaller than the angle of

incidence
</>'

of the incident waves
; <f>

-
<f>

will then be negative, < + <j>'

positive, and hence both a- and o-' negative ;
for waves of short wave-

length A, a- and a-' will, therefore, assume large negative values at

finite distances r from the edge of the obstructing screen. The four
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(Fresnel's) integrals that come into consideration here are now similar

to those examined on pp. 226-228
; by the geometrical properties

peculiar to these integrals the vectors A'E and A'E' will be very
short and will thus cut the (Cornu's) spiral approximately orthogonally;
hence the lengths of these vectors will be given approximately by the

radii of curvature, p and
/o',

of the spiral itself at the two points E
and E' of the same

; by formula (25) we have then

A'E = p = and A'E' = P
' =

,. ...(8?)
7TO- 7TOT

For similar reasons the angle x5
which the two vectors A'E and A'E'

make with each other, may be replaced here by the angle r included

between the two tangents to the spiral at the points E and E'
;
the

latter angle is now determined by formula (24) ;
we can thus write most

approximately v
x = T =-(o-2-er'2).

On replacing the vectors A'E and A'E' and the angles x, 7 and y by
their above values in formula (86A) for /, we have

/ prop, to ~J -^ + -^
T ^7

cos
^p(cos <-<')- ^cos(<

+ </>')

1

A
"

or, since the angle (y
-

y' + x) evidently vanishes here,

1 1 2 \ o? (\ n 2

Lastly, replace here a- and o-' by their values (76), and we have

ft
2 A

+ sin2 ($ - <y)2 sin

a2 X
prop, to -s ^~

7T
2 2r

which gives /prop, to -9
- ^ [^

C< S

-~^ ) (88)
7T
2 r (cos <

- cos <

)
2

when the waves are polarized at right angles to the edge of the

obstructing screen, and

a2 A cos2 <f>/2 sin2 <72
/prop, to -s 7 7 T/> 9 , (89)

7T
2 r (cos q>

- cos
<?> )

a '

when they are polarized parallel to that edge.
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For a further examination of Sommerfeld's formulae see Exs. 17-19

at end of chapter.

Shortcomings of Sommerfeld's Theory. It follows from formulae (88)

and (89) that along the screen, < = 0, the waves will be polarized

parallel to its edge, and that as < increases both intensities, that

parallel to its edge and that at right angles to the same, will increase,

but their difference will diminish, whereby, however, the latter intensity

will always remain smaller than the former
; moreover, both intensities

will be directly proportional to the wave-length A of the waves

employed. If we employ white light, the waves of greater wave-

length should, therefore, predominate well within the geometrical

shadow, that is, for small values of <
(cf. also formulae (81)-(84A)).

Observation* now shows that the distribution of the waves of different

wave-length or colour within the geometrical shadow is not according

to this law, but that it depends on the nature of the screen, whether

its diffracting edge be sharp or rounded, etc.
;
certain screen constants

would, therefore, have to be introduced into the surface conditions

(73) and (74) in order that the results obtained should agree with

observation
;
not only the determination of these constants but also

the integration of our differential equation (72) for other surface-

conditions than the above (73) and (74) offers now unsurmountable

difficulties. In consideration of these shortcomings it is evident that

little has been gained by the introduction of the "totally reflecting"

diffraction screen assumed by Sommerfeld in place of the "
opaque

"

screen employed above in Fresnel's (modified) theory of diffraction.

Whether the inaccuracies due to the introduction of the totally re-

flecting screen in the above form, where the screen constants have

been entirely neglected, are of greater moment than those that arise

from the assumption made in Fresnel's (modified) theory that, namely,

the light-vector s vanishes directly behind opaque obstacles but assumes

its natural value at all other points on the surface of integration,

cannot well be decided except by experiment.
Form of Maxwell's Fundamental Equations for Sommerfeld's Light-

Vector s. We have seen in Chapter I. that the electromagnetic state

of Maxwell's ether is defined by differential equations of the form (71),

where s is to be replaced by the component electric or magnetic moments

X, Y, Z, or a, ft,
c respectively (cf. formulae (16, I.) and (17, 1.)). These

components will now be the derivatives of the light-vector s with regard

to x, y, and z, and Maxwell's fundamental equations (12, 1.) and (13, I.)

must evidently hold for those components (cf. Ex. 20). These

*Gouy, Ann. de Chim. et de Phys., (6) 8, p. 145, 1886.
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equations will evidently assume here, where the electromagnetic state

has been assumed to be a function of x and z only, the form

_ dc da M dZ db

dt~dt* vn dt~dx dz vn dt~ dx

and
D da dY D db dX dZ D dc dY .(90)

VQ dt dz* v
Q
dt dz dx* v dt dx

The Primary and Secondary Waves and the Different Theories of

Diffraction. We have already observed on pp. 195-196 that both the

primary and secondary waves may give rise to phenomena of diffraction.

A treatment of these waves according to Fresnel's modified theory of

diffraction meets at the outset with unsurmountable difficulties; the

first such is to establish a formula similar to formula (55, V.), which

shall express the light-vector s at any point as an integral taken over

any suitably chosen surface enclosing that point. In the derivation of

formula (55, V.) we assumed that the light-vector at any point, as on

the surface of integration, was a purely spherical wave-function, an

assumption that cannot be maintained for the primary or secondary
waves and of which we made free use in the derivation not only
of formula (55, V.) itself, but also of the fundamental formulae em-

ployed at the very start. On the other hand, a treatment of the

diffraction phenomena of the primary and secondary waves according
to Sommerfeld's theory would be possible, provided we could find

solutions for s that would represent primary and secondary waves

and also fulfil the surface-conditions on the obstructing screen
;
but in

consideration of the complicated form of the vector s for the simple
case examined by Sommerfeld, we could hardly expect much success

in that direction.

The Eoentgen Bays as Impulses and Sommerfeld's Theory of

Diffraction. Sommerfeld has also developed a theory of diffraction for

waves that consist of a succession of short and violent impulses, to

which class the Koentgen rays are often assumed to belong ;

* as an

exposition of his theory would throw little light on the theory of

diffraction proper, we refer here to Sommerfeld's paper f on the subject.

We may remark, however, that the same scruples, which we had in

accepting conclusively his above theory on diffraction, also arise here.

*Cf. E. Wiechert, Abhandlungen der Phys.-Oekon. Gesellschaft zu Konigsberg,

1896, pp. 1 and 45 ; also Wiederaann's Annalen, Bd. 59, 1896 (6).

t Cf. also Sir George Stokes, Proceedings of the Cambridge Philosophical Society,

vol. 9, p. 215, 1896, and Proceedings of the Manchester Lit. and Phil. Society, 1897.
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EXAMPLES.

1. The breadth of the nth exterior band or fringe produced on the screen MN
by the straight edge A of the opaque obstacle AB of Fig. 21 is determined by
the expression

and [V - \7i^7]*2\> for a dark band,

where a denotes the distance of the edge of the obstacle from the source and

b its distance from the screen MN.
By Fig. 21 the following geometrical relations evidently hold between the

distance x of any band n at Q from the boundary of the geometrical shadow P^
and the other distances :

and AQ=

For light-waves the second term of either expression under these square-root

signs will be very small compared with the first or unity, so that, by the

binomial theorem, the expressions for OQ and AQ can be written approximately,

.(a)
[ ^,'2 \ w'l I

and

For a bright band or maximum of intensity the difference in the paths A Q and

PQ traversed by the elementary waves from the last unscreened half-period

element of the given wave-front and those from the pole of the same must now,
as we have seen on p. 187, be an odd multiple of the wave-length X halved of

the waves employed, that is, we must have

AQ-PQ= (2n + l)\f2 ................................. (6)

(cf. formula on p. 187), where n is an integer.

Similarly, for a dark band, we must have

AQ-PQ=2n\/2........................................ (c)

Since now PQ =OQ-OP=OQ-a,
we can write the condition (6) for a bright band,

and that (c) for a dark band,

AQ-(OQ-a) = n\.

Replace here AQ and OQ by their approximate values (a), and we have

and
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hence x=
^(2n

+ 1 ) X J^tS for a bright band

an(l x=\J2n\
b(a + b

) for a dark band.
V a

The breadth of a dark band will, therefore, be given by the expression

V a V

and that of a bright band by

&-*&=!]fa-Ll. QE]X

2. The diffraction bands on the exterior of the geometrical shadow of a large

opaque obstacle decrease at first rapidly in breadth, as we recede from the

boundary of the shadow. Show, on accepting the formulae established in the

preceding example, that the breadths of the following bright bands are :

Band (n), 12 3 4 5 9 10 25 26

Breadth, 1 0'4142 0-3179 0-2679 0-2361 0-1716 0-1623 O'lOlO 0'099

where the breadth of the first band is taken as unity.

3. Show that the breadth of any diffraction band within the geometrical shadow
of a small opaque obstacle (wire) is according to the (Fresnel's) methods employed
on pp. 188-192 given by the expression

\b

c
'

where b denotes the distance between the screen of observation and the obstacle,

and c the distance (breadth) between the two diffracting edges of the latter

<cf. formula (7, IV.) and Fig. 12).

4. Examine by the (Fresnel's) methods employed on pp. 185-195 the diffraction

phenomena produced by a very small circular aperture in a large opaque screen.

Show that along the central axis of the image the intensity passes through a

succession of maxima and minima, and determine approximately the distances of

these maxima and minima from the aperture.

We divide the unscreened portion of the wave-front that passes through the

edge of the circular aperture up into circular half-period elements with respect to

the point, at which the intensity is sought. For a very small aperture the area

of any such half-period element will now be given approximately by

^cf. formula (5, V.) and Fig. 17), where r^ denotes the distance of the aperture
and r2 that of the point of observation from the source.

The area of the whole unscreened portion of the given wave-front or the circular

aperture itself is evidently ?rr2
,
where r denotes the radius of that aperture.

Since now for a very small aperture the different half-period elements will have

approximately one and the same area (cf. the expression (a) ), we may evidently

put

?i7r^(r2
-r

1)X = 7rr
2

,

'2
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where n shall denote the exact number of half-period elements, into which the

unscreened portion of the given wave-front may be divided, corresponding to

the points of maximum and minimum intensity sought on the central axis of

the given image. This relation gives

(cf. Fig. 17), hence r*~ Tl
=
n\r -r*'

.........................................^
by which the distances of the maxima and minima of intensity from the given

aperture are determined according as n is odd or even respectively.

5. Determine the formulae for the vector 6' and intensity 7 of waves of long

wave-length, as the electric waves, corresponding to formulae (13), (15), (18),

(ISA), (19), (29), (35) and (38) in text for light-waves.

By formulae (54, V. ), which holds for waves of long wave-length, the expression
for the vector sought can evidently be written here, where the source of dis-

turbance and the point of observation Q are both supposed to be at considerable

distance from the aperture s in the large obstructing screen (cf. Fig. 25),

^ [cos(n, p)
-
cos(w, r)] / ^^-[vt

-
(p + r)] ds

A pr j A

a |~COS(M, p) cos(?i. r)~] [ . 2?r rv ' p> L^ -
f ain-r- [vt -(p + r)]ds=

pr\_ p r _\J A

pr

+

(cf. p. 202).

Replace here p and r by their approximate values (12A), and we find

2ra 1 f 2?r [
^

47rs = [cos (n, p)
- cos (n, rm cos [vt

-
(ft + p )] /

cos \_f(x, y)] dsA pr ^ A j

2?r /" )- sin [vt
-

(ft + p
)]j

sin [f(x, y)] ds\

a Fcos (n, p) cos (w, r)
s[/(a;, y}}ds

+ cosy [vt
-

(pl + p
)]J

sin [f(x, y}-\ ds\

which we can write in the form

f f r i

,

= sin u< - A
j

/ sin [/(^, y)] ds +A 2 l cos [/(#, t/)] rfs

, , (. (
} ' (18/)

+ cos
w|Ji

/ cos [/(x-, y)] ds +A 2 sin [/(#, y)]
o?s|

where ^4!= ^^-- [cos (w, p)
- cos (n, r)]

a
|~cos(w, p) cos(w, r]

'~4irpr\_ p r

27T,

andy^a:, y) is given by formula (14) or (17) according to the system of coordinates

employed.
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The vector s can thus be conceived as due to the mutual action of two systems
of (elementary) waves emitted from the given aperture, whose difference in phase
is 7T/2 and whose amplitudes are determined by the expressions

-A
1
J

sin [/(a?, y)]ds + A 2
J
cos [f(x, y)] ds

Ajcoa[/(xt yftds+AjiMlfrx, yftdsand

(cf. pp. 203 and 213).

For the diffraction on the straight edge of the large opaque screen of Fig. 25,

formula (18') will assume the form

dxdyt
X

f sin [~ ( +
J J LA \Pi Po

!
X

I cos [^ ( +"
-oo

l

l /cos J( H

J J LA\PI Po
oo oo

/""si

J

\dxdy

sn - +
Pi Po

dxdy}
J j

.(19')

(cf. p. 205).

On replacing here x and y by the variables v and u respectively employed on

p. 205, we find, by formulae (32), the following expression for s :

X \ Pi Po /

[-
rv' Tftf rv' ^V2

+ A
z\_J cos-y-dv- J sin-^-

, f r'. TTV2 . r* TTV2 ,-^ 2M sm dv +
j cos-^-dv

The resultant intensity I at any point Q will, therefore, be proportional to

the expression

\2 ( . r r' .

2
7 r

9' 2
, n

TV I"* 1 sm ^r dv+ I cos-^-dv- +- l L ~ J
Po

TV* . rv'. jrv
i

^-dv- j sm-^-

2_ (. r r' TV*, rv '. irv*,-\-
TT^I^ 1 cos

-9~
dv -

/
sm-s-dv

l 4. 2
i.

* J

. r r'- iro2
7 r' ^2

-^4J /

sin72-di;+
/

cos-^-

Pi Po
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r
'

7
2

A /**'
7ry2 ~i

2

4cos2
0(-f+ -f

J

^ *L
2

L
C 82

l~ CV
'

TV* Cv
'

7TV2 ~l
2
^

+ (A-L-A^l coa-^-dv-(A l +A2 ) I

sin-^-dv [

Pi

or, if we replace here A^ and A 2 by their values (18'A) and p and r by their

approximate values fa and /o respectively (cf. p. 202),

which referred to Cornu's spiral can be written in the form

/prop - to ^ ww+m................. OB')

The above formulae differ from those in the text for light-waves only in the

values of their coefficients ; the diffraction phenomena of waves of long wave-

length, as the electric waves, will, therefore, be similar to those produced by

light-waves, differing only quantitatively from the latter.

ri+u ffyZ 1 p ^ TTi
2"!

6. Show that / cos
-^-

dv . sin ^ (i
2+ 2m) - sin

-^~

and Tthi^= dv i-f - cos
| (i

2 + 2iw) + cosf\>*
i

where i is given and u is so small a quantity that its square (tt
2
) may be neglected

compared with u itself.

We replace the variable v in the given integrals by i+ u, and we have

/
cos^~dv=

I

cos^(i
o

and ftin~ dv= Tsin
| (*

z

'

or, on rejecting the terms in u2
,

i+u

/i+u

^^2 fu ^ B Ti-2 pi/ q ^2 /-M

cos -^-dv=
I

cos ^ (i
2 + 2iw) cfat= cos cos ?rm dw - sin

-^-
/ sin ?rm dw

i

""

/+"
7r|}2 ru TT ^j-2 /"u ^^2 ru

sin
-^-

rfv= / sin
g (*

2 + 2z
'

w) rfw~ s^n "o" /
cos v *u^u + cos

"o~ /
sin T*Mdu 5

which integrated give

/ cos
-^-

dv : cos sin Tritfc -i ; sin -- [cos iriu - 1 ]

*Cf. Fresnel, Oeuvres, torn. 1, p. 319; also Preston's Theory of Light, p. 275.

R



258 ELECTROMAGNETIC THEORY OF LIGHT.

/<+ 7TV2 . 1 . TTl
2

. 1 TTi\and / sin
-^-

dv= . sin sm TT*M --= cos -~-[cos TTW - 1 j

Q.E.D.

Fresnel employed these integrals for calculating the values of his integrals (22),

taking w= 0'l and i successively equal to O'O, O'l, 0'2, etc. ; by this method he

was enabled to plot the curve (spiral) |, 77, determining successively the values

of and 77 for every O'l of the quantity u(v) (cf. p. 211).

7. Fresnel's integrals (22A) can be written in the form

fTrv
2

, ,, TTV2 , r . Try2

cos
-g-

dv=Mcos -- +Nsm
~^-,

Cv .TTO2 . 7TV2 TTV2

and / sin-^-dv=Msm -Ncos-^-,*

Where
_T7*76 l. 3.5.7.

2 2

^

Integrate the given integrals by parts, and we have

Cv TTV* - TTV2 Cv . . TTV2 ,

/ cos dv= vcos-~- + TT
I

v2sm-~-dv

Try2 (V3 , TTV
2

. Try2 TT V5 Trv2

etc.

T

J

rv . Try2 _ . Trw2 r*
1 irvz ,

and / sin -~~ dv= v sin
-^

TT / v2cos -x- dv

. Try2

smT

7TV2 (V
3 TTV2 TT

cos-2-
+
g
o

Try2 Trw5
. Try2 v Cv irvz

etc.

8. Show that the following (Fresnel's) integrals can be written in the form :

rTry
2 Try2 . Trv2

cos-^-dv= coa-^-Qsm-^-
V

I TTi^
and

* Cf. Knochenhauer, Die Undulationstheorie des Lichts, p. 36.
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D r 1 1.3.5 1.3.5.7.9 -1
where P= v[^ --^ + -

(^2)6 -+...J

~ r 1 1.3 1.3.5.7 1*and ^___
3
+_____ + ....

To evaluate these integrals, we start from the two expressions

1
and

where /c is an integer, differentiate them with regard to v, and we have

d r I 7rW2n 1 . TTV* K+l 1

. 7TV 1 7T?;
2

and

we then multiply these expressions by dv and integrate from v= v to v= oo
, and

we findwe find

/""I .

and

1 . 7TV2

.

dv

f 1 7T"y
2

7 1 . TV2 K + 1 f" 1 . 7TV2 ,ana / cos -^- av= j^rj
sin <-JT- + / . 2

sin -^- dv ;

J &
V V

by the repeated application of these reduction-formulae (K= Q, 1, 2, 3...)

evidently write the given integrals

^V=~ 8in
lT

+
7rJ ^IT^

1 , 7TV2 If! 7TV2 3 T
00

1 7TV2 7 )= sin -jr- + ( o cos -jr /
. cos -77- aw }

7TV 2 TT^T-y
3

, 2 TTj ^ 2 J

= _-l sm ?[?L

2

+ J_ (OS - I- JL sin !!2? ^P^sin^?
vv 2 7r

2y^ 2 7r
2 l TTV^ 2 ?rj v^ 2

v

= _ J_ Sin 1^.+J_ cos !^+ __ gin -

i Trv2 7 ri 2
)^ COS

"2"~W ^ COS
2

dv
)

we can

etc.

f 1 3 3.5.7~
5~^ "! iTo

Tr
8^5 7r

5
??
9

5.7 ) .

2___ +
...|

sm _;

* Cf. Cauchy, Gamptat Rendus, torn. 15, pp. 534 and 573.
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and, similarly,

f
/
J

^d -_L 7I^!_ 1 /_ 1 ^ 3 /J_
2 5

[
1 ^2

"2~ '~^ COS ^~^\~^Sm^ +^\^5COS ~2~~T\"~TV7Sm "2~

1.3.5 ) . 7TV2

Q.E.D.

9. Show that the following (Fresnel) integrals can be expressed in the form

7TV2 , 1

and

f

where P and Q are given by the series employed in the preceding example.

P -n-V
2

,' T
00 TTV2 , T 00 7TV2 ,We have / cos-2-av=

/

cos-^-av- /

cos-^-av

/ . 7TV2 , y*

00
. 7TV2 , T 00

. 7TV2 ,

/ sin-g-awsl sm-^
-dv- I

sm-^-dv,
and

which by formulae (31) and Ex. 8 can evidently be written in the above form.

10. Examine, as in text pp. 218-224, the diffraction of light on a slit (in a

large opaque screen) of such breadth that v
' -

v% is always very large, and show

that bright and dark (coloured) bands or fringes will appear in its geometrical

image. Show also, as the breadth of the slit is increased, that the diffraction

phenomena will resemble more and more those produced on the straight edge of a

large opaque screen.

11. Examine, as in text pp. 226-231, the distribution of the intensity outside

the geometrical shadow of a narrow screen or wire ; show that the diffraction

bands, which appear there, will obey no simple law of distribution.*

12. Show that formula (58) will hold at any point (/* and v ^ 0), when
the rectangular aperture in the obstructing screen is large. By formulae (61)

the dark bands of both series will then be correspondingly near together,

and hence for large values of a and 6 inobservable (cf . problem on diffraction

on narrow slit (b= cc
), p. 235).

13. Determine the form of the coefficient c'
2 + s'

2 in formula (66) for four equal

apertures in a large opaque screen situated at the four corners of a square.

If we lay the origin of our coordinates x' y' (cf. p. 236) at one of the four

corners of the square, and choose the two sides of the square that meet at that

corner as x' and y' axes, we can then put

*Cf. also paper by Lommel, cited in foot-note on p. 215.
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where d denotes the length of the sides of the square. The quantities c' and s' of

formulae (65) will then assume the particular form

s' sin /AC? + sin vd + sin(/j,+ v)d,

and hence the coefficient in question

c'
2+ s'

2= 4 + 4[cos/xrf + cos vd + cos pd cos vd], ...................... (a)

the form, in which the general formula (67) is written. It is evident that the

second term of this expression cannot be neglected in comparison to the first

(cf. also p. 238).

We can also write the expression (a) for c'
2 + s'

2

c'
2+ s'

2-
(2 + 2 cos pd) + (2 + 2 cos vd) + 2 cos pd (

1 + cos vd) + 2 cos vd
(
1 + cos ftd)

-Q-
4 cos2 *~ + 4 cos2-- + 4 cos fj-d cos

2 -+ 4 cos vd cos2

= 4 cos2
Y.(

1 + cos pd) + 4 cos2^ (
1 + cos fj.d)

. /j.d ^vd= 16 cos2^ cosj
-~-.

Show that the given diffraction pattern will thus exhibit two series of dark equi-

distant bands running parallel to the two pairs of parallel sides of the square in

addition to the two series produced by the single (rectangular) aperture (cf. p. 234).

14. Sommerfeld's expression (75) for s assumes the following familiar form in

the region of unobstructed propagation, <'<0<27T-0' (cf. Fig. 31), for large

values of r :

-$')l
J.

Here or will evidently assume large positive and a' large negative values, so

that the second integral of the general expression (75) for s may be rejected when

compared with the first, whereas the latter may be replaced approximately by
the integral

r

=2 / 2i dv= 1 -

(cf. formula (30A)). We thus have, by formulae (75) and (76),

Observe that for r=oo the real part of this expression represents plane-waves of

amplitude a and whose direction of propagation makes the angle 0' with

the aj-axis.

15. Show that Sommerfeld's expression (75) for s assumes the following form in

the region of the reflected waves, 27r-0'<0<27r (cf. Fig. 31), for large values

of r:
/

OTJ* r" ~i o. r~

I i I vt r cos(d> -
d>') i v
'J + e A|_

Observe that for r=cc the real part of this expression represents the resultant

of two plane waves, any incident wave of amplitude a and direction of propagation

0' with regard to x-axis, and that wave reflected (according to law of reflection).
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16. Prove that Sommerfeld's general expression (85) for the intensity / can be

written in the form

/ prop, to | {A'E
2
+ A'E'

2
+ 2A'E . A'E' 003(7

-
y' +

x)}

(cf. formula (86A)).

On performing the multiplication of the two conjugate complex quantities for]s

in the expression (85) for /, we have

/ prop, to
|{(

_
irj) (f+ ir,) + (

-
irj') ( + irf) T [e**^

-

+-%-V)($

prop, to
2

{ ({ + ^2) + ('2 + ,,'2) T (tf +w') [C
*(Y

- y> + e
-

or, on expressing the exponential base as function of the sine and cosine,

a2 -
/ prop, to -

{A'E^ + A'E^^ZUtt' + ri) cos (7
-

7') + (V -
'77) sin (7

-
7')]}

(cf. formula (86)).

If now we denote the angles, which the vectors A'E and A'E' make with the

-axis, by a and a' respectively, we can put

%=A'E cos a, 77 A'E sin a,

g = A'E' cos a', if = A'Ef sin a',

and hence write the expression for /

/ prop. to-^{A'E'
2
+ A'E'

2
^2A'E. A'E' [(cos a cos a' + sin a sin a') cos (7 -7')

+ (cos a sin a -cos a sin a') sin (7-7')]},

prop, to ^{A'E
2+ A'E^'2A'E. ^4

/

^'[cos(a-a
/

)cos(7-7')-sin(a-a')sin(7-7')]},

prop, to {A
7^2 + A'E'

2
ipZA'E.A 'E' cos (7

-
7' + x) }+

where x= a ~ a'- Q.E.D.

17. By Sommerfeld's theory of diffraction the intensity / at any point of the

region 0'<# <2?r -
<j> (cf. Fig. 31) is determined approximately by the expression

In the given region both \(4>~<t>'} and ^(0 + 0') will be positive, and hence <r

will assume large positive and a' large negative values for finite r and waves of

short wave-length X. A'E will, therefore, be large, approaching the value \/2,

and A'E' so small that it can be replaced approximately by the radius of

curvature of the spiral itself at the point E' (cf. p. 250). The vector A'E will

make an angle of approximately 7r/4 with the -axis of the spiral, whereas the

angle made by the tangent to the spiral at the point E' with the -axis will be
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given approximately by the expression
^<r'

2
(cf. p. 250 and formula (24)); the

angle \ can thus be written approximately

_/7T_7r\ IT

X~~U 2,1 2*

or, by formulae (76), = - -~ sin2 (0 + 0').

The angle 7 -
7' + X w^ thus assume here the form

7-

= -
-7 + -r- sin ^ sin 0'

- -r [sin 0/2 cos d>'/2+ cos 0/2 sin 0'/2]4 A A

= -
^ + -^ [4 sin 0/2 cos 0/2 sin 0'/2 cos 0'/24 A

-
(sin 0/2 cos 0'/2+ cos 0/2 sin 0'/2)

2
]

= _ ?T _
l^T [sin 0/2 cos 0'/2

- cos 0/2 sin /2]
2

4 A

On replacing the angle 7 - 7' + x by this value in formula (86A), we can write

the expression for /

/prop. to

or, if we replace here A'E and A'E' by their approximate values

and A'E'=p' = ,= -
^ '

and retain terms of only the null and first orders of magnitude in the small

quantity p', most approximately

/ prop, to e 1 A
TT \4r

Show that as varies this expression for / will pass through a series of maxima
and minima, and that the nearer approaches the boundary = 27r-0' of the

region of the reflected waves (cf. Fig. 31) the more marked will be the diffraction

bands corresponding to these maxima and minima.

18. Show according to Sommerfeld's theory of diffraction that well within the

region of the reflected waves (cf. Fig. 31) A'E and A'E' will each assume approxi-

mately the value \/2 and x vanish, and hence that / will be given approximately

by the expression

/prop, to a2

^2^2 cos
-^sin0sm0'

> ;

that is, if we choose the minus sign, / will vanish, when

sin0sin0' = l, 2, 3, ...,
A
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whereas it will assume four times the natural intensity, that of the unobstructed

incident waves, when
2r . . . 1 3 5

'

the resultant waves are evidently the so-called "stationary" waves (cf. pp. 13-14).

19. Examine Sommerfeld's expression (86A) for / in the region of unobstructed

propagation (cf. Fig. 31).

20. Show that the solution (75) for s will satisfy the particular form (90)

assumed in the case in question by Maxwell's fundamental equations, when

X, Y, Z or a, b, c denote the components of that light-vector s.



CHAPTER VII.

REFLECTION AND EEFEACTION ON SURFACE OF ISOTROPIC

INSULATORS; TOTAL REFLECTION. REFLECTION
AND REFRACTION OF THE PRIMARY AND SECOND-
ARY WAVES.

Reflection and Refraction and Maxwell's Equations for Electro-

magnetic Disturbances. We know, when light falls on the surface of

a second medium, that part of it is turned back or "reflected" and

part admitted into that medium or "refracted." This reflection and

refraction of light rays on the surface of a second medium and the

phenomena arising therefrom are now, according to our conception of

the nature of light, electromagnetic phenomena, and we should, there-

fore, be able not only to explain them as such, but also to derive the

empirical laws on reflection and refraction from our (Maxwell's) equa-

tions for electricity and magnetism. We shall confine ourselves here,

as in the preceding chapters (cf. p. 6), to the behaviour of electromag-

netic disturbances in homogeneous non-conducting media, and, in the

present chapter, to their behaviour in such isotropic media. The electro-

magnetic state of an homogeneous non-conducting isotropic medium is

now according to Maxwell defined by the differential equations

V
Q

dt dz dy

#A dt dx dz

and

__
V
Q

dt dy dx

Mda= dfi_dQ
VQ dt dy dz

Md = dP_dR
v
Q dt dz dx

Mdy = dQ_dP
v
Q dt dx dy

(cf. formulae (5) and (6), i.), where P, Q, E and a, /?, y denote the

components of the electric and magnetic forces respectively ;
v denotes



266 ELECTROMAGNETIC THEORY OF LIGHT.

the velocity of propagation of electromagnetic disturbances in the

standard medium (vacuum).
The Surface Conditions. On the dividing surface of two non-con-

ducting isotropic media the equations (1) and (2) assume the following

particular form, when the normal to that surface is chosen as -axis :

henCe = const.

and d_(M?_ _^! a 0, hence a
T
- a = const.,

(cf. formulae (3), (4), (10), and (11), I.), where the index or 1 denotes

that the compound force to be taken is that or the sum of those acting
in the first (0) or second (1) medium respectively (cf. Fig. 32). On the

assumption that no electromagnetic forces were acting in the film be-

tween the two media before the passage of the disturbance in question,

these so-called
" surface-conditions

"
can evidently be written in the

simpler form D P - D P 00 R P ^
1 l

a l a -(j B-R' y -v' I

(3 >a
i

ao~u
J Pi~ Pot 7i~7o J

We have chosen the above form of our differential equations, where

the forces and not, as in the preceding chapters, the moments appear
as variables

;
for the present purposes this form is somewhat more

convenient than the other, since the forces acting in adjacent media,

and not, in general, their respective moments, may be compared or

FIG. 32.

superposed directly, as is evident from our surface conditions (3) (cf.

also below). The surface conditions (3) have been referred to a system
of rectangular coordinates, whose cc-axis has been so chosen that it coin-

cides with the normal to the given dividing surface. Let now the y-

and 2-axes be so situated in this dividing surface that the normal to the

wave-fronts of the given (transverse) waves incident at any point, the

origin 0, on that surface lie in the xy plane, as indicated in Fig. 32 ;

* Cf. p. 6.
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the normals to the wave-fronts of the reflected and refracted waves
will then evidently lie in that same (xy) plane, which is then known
as the "plane of incidence." We denote the angles, which the normals

to the wave-fronts of the incident, reflected and refracted waves, make
with the x-axis, by (/>, </>',

and ^ respectively (cf. Fig. 32).

Linearly Polarized Plane Waves. Let us first examine the case

where the incident waves are ordinary linearly polarized plane waves.

We can now represent such waves by the function

rv^/,t w
/ 2irV 2?r*

where *W-1, ^ =
~X~

=T ' ^
jf being the period of oscillation, and r denotes the distance of any
incident wave from the point 0, where it strikes the dividing surface

(cf. Fig. 32). Here the quantity n is not that (n) employed in the

preceding chapters (cf. formulae (31), n.) ;
we have chosen the given

form for n in the ensuing investigations, since it will then assume one

and the same value in all (both) media, for just as many impulses
or waves per unit-time will be imparted to and transmitted through

any adjacent medium as there are impulses or waves per unit-time

in the given medium, that is, the period of oscillation of any given
oscillation will not change upon its entering a second medium. That

we choose the complex form (4) for representing the given waves is

only a matter of taste; this complex function contains, in fact, two

systems of waves, the one represented by its real term and the other

by the real factor of its imaginary term.

The Reflected and Refracted Waves. If the incident waves are

represented by the function (4), the respective reflected and refracted

waves will evidently have the form

(r'\
I r\\

t-y) i
*nr~,7J ' /\

1*0 v/ and a^
^ Vl/

,j (o)

where a' and a
x
denote the amplitudes, v' and v

l
the velocities of pro-

pagation, and / and ^ the distances from the point on the dividing

surface, where the given incident waves strike the same, of the

reflected and refracted waves respectively (cf. Fig. 32) ;
the quantities

a', a^ v' and 0j are to be regarded here as unknown and to be sought.

If we refer the incident waves (4) and the reflected and refracted ones

(6), to which the former give rise, to the above system of coordinates

f- For waves approaching the point O, as the incident ones, the plus-sign must

evidently be chosen before -, whereas for those that are receding from that point,

as the reflected and refracted waves, the minus-sign must be taken.

* Cf. p. 12.
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(cf. Fig. 32), the distances r, r' and r
x
can then evidently be written

in the form

r' =y sin <' + x cos <'

r^y sin <
x
- x cos ^ J

(cf. Fig. 32), and hence the three waves themselves in the form

(7)

ae \

, in(t-
y&i
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the remaining three equations all reduce to y = where R is to be

replaced by its value from formulae (10), and similar equations for

R and R
l

.

The Magnetic Waves. It follows from formulae (2A) and the

analogous ones for a', /?', / and a
1} fiv yx

that all three magnetic
oscillations are taking place in the plane of incidence, that is, at right

angles to the respective electric ones
; to find their two components

in this plane, we replace the R's by their values (10) in the given

equations, and we have

Mda_
VQ dt

Mdp _

^dt
"

Mdaf
=

v dt

M_df!__
vn dt

=

. sin- am e

. cos< **(*"- am e
x

v

in
/
t _ ysin<f>-xcos<t>\

]!(* ysin'<j)'+xcos(f>'\
,. sm< **(<-- %, -)ntn ' a ^ /-am 7 e

^ygjlfj***-*)

vn dt

(* 2/ sin 0!
-

^t-- -

vn dt

integrated, these equations give the following values for the a's

and t :

a = -a -A

,8
= -a

. . / ysin^-a:cos^\ \

COS
f _ ysin<f)-x cos <[>\

,VQ sinfi *(*

'= a'
jsr

a1= -aj

.(11)
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Replace, next, the a's and j3's by these and the R's by their above

values (10) in our fundamental equations (lA), and we have

D in(t-y

and similar relations for the reflected and refracted waves, which give

t>A Jf fl
2*

hence v1 =-7^DM
c\

and similarly v'
2 = ~

.(12)

that is, these familiar relations (cf. p. 11) must hold between the

velocities of propagation of the waves and the medium constants, in

order that our fundamental equations (!A) may be satisfied. It

follows, moreover, from these conditional relations that

i/ = v; (12A)

that is, the velocity of propagation of the given electromagnetic

disturbance undergoes no change upon reflection.

The Surface Conditions and the Laws of Reflection and Refraction.

Let us, now, examine the surface-conditions (3) for the given system
of waves

; they evidently assume here the simple form

,(3A)
and

ttj
= a

, ft
=

/3 ,

'

yl
= y =

The index 1 denotes that the component force to be taken is that

acting in the medium 1, that is, here the component force acting in the

refracted waves, whereas the index refers to the component force or

forces, acting in the medium 0, here the component force acting in

the incident and that acting in the reflected waves superposed. The

given surface-conditions (3A) must, therefore, be written explicitly as

follows :

(3A')

the other component forces vanish.

Replace here the R's, a's and /3's by their above values on the given

dividing surface, x = 0, and we have
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, '^^^J/J

i

+ a'e

a
1M

v-^
M v

,+a
it

and
cos

.......(is)

M v

where, by formula (
1 2A), we have put v = v.

The surface-conditions (13) must now hold not only for all values of

t but also at all points on the given dividing surface, that is, for all

values of y (and z); this is now evidently only possible, when the

following relation holds between the its and the <'s :

sin < sin <' sin ^
v v v

l

which gives

.(14)

.(15)

(cf. Fig. 32), or the familiar law, the angle of incidence is equal to the

angle of reflection.

The first and last members of relation (14) give

= w
01 ,

....................... (16)sn sn <> =

or the (Snell's) law of refraction
;
n
01

is known as the " index of

refraction" for waves passing from the medium into the medium 1.

The laws (15) and (16) follow directly from the actual existence of

the surface conditions or from the fact that a linear relation holds

between the forces acting in the film, being entirely independent of

the form of those conditions or that relation, its coefficients.

Determination of Amplitudes of Reflected and Refracted Waves.

We have seen that the relation (14) must hold between the v's and the

<'s, in order that the surface-conditions (13) may be satisfied; but it

does not necessarily follow that they are satisfied ;
this will be, in

fact, the case only when certain other relations hold between the

amplitudes a, a' and a
l
and the angles </>,

<' and ^ or the medium

constants. These relations may now be determined from the surface-

conditions upon the assumption of the validity of the latter. By
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the relation (14) the three surface-conditions (13) will then reduce to

.(17)
the two
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Case II. : The Electric Oscillations in ^-Plane. Here

E = R' = E
l
=

J

and our fundamental equations (2) evidently assume the form

Mda_ Md_ Mdy_dQ_dP
v dt~ '

VQ dt~^ v dt~dx dy>"

the first two of which give
a = /?

=
0, ................................. (22)

that is, the accompanying magnetic oscillations are taking place at

right angles to the x?/-plane or to the electric oscillations.

By formula (22) our fundamental equations (1) then assume the form

V<W^_dy^ D^dQ = dy
VQ dt dy v dt dx'

As above, we can now represent the electric force acting in the

incident electric waves by the function

.

be

where b denotes its resultant amplitude (in the z?/-plane). Its com-

ponent forces, P and Q parallel to the x and ?/-axes respectively, will

then be
. / ysinft-zcosftX ^

P-ftrin^l
~^_^J

I

(23)

Q = bcos<l>e
n
(

t ~~'
l~^

Similarly, the component forces acting in the reflected and refracted

electric waves will have the form

nc^ e

vs
.

n ^ QS ,
I (24)

Q' = - b' cos (f)'e

n
\ v

'

' }

(cf. Fig. 32, where oscillations of the incident and reflected waves

corresponding to the given case are represented graphically by arrows)
and

P = h in ^ /T~ \r ) I

where b' and ^ denote the resultant amplitudes in the reflected and
refracted waves respectively ;

as in case I., b', bv <f>', <j>v v' and v
l
are to

be regarded here as unknown and to be sought.
To determine the magnetic forces acting in the incident, reflected
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and refracted waves, we replace the P ;

s and Q?s by their values (23),

(24) and (25) respectively in formulae (!B), and we have

n . / ysiiKfr-scosM
d-v

-bsm<f>ine V * ) = _^,
v ay

V
Q

~~

dx

and similar equations for the reflected and refracted waves; these

integrated give one and the same value for y, namely,
,-. . / y sin <f>-x cos c\

similarly, we find the following expressions for

y' and y-^
:

D in / t _'''
xcos^A

.(26)

and

Lastly, replace the P's, Q's and y's by the above values in the last

equation (2B), and we have

, /cos2
^> sin2c\ . **(* j

\ v D )

with similar relations for the reflected and refracted waves, which gives

~DM>

similarly, we find

hence v' = v,

the same relations (12) and (12A) as those found in case I. By these

relations, we can now write the magnetic forces (26) in the form

'Mv

L/^O 1

and

/

.(27)

the form in which the magnetic forces appeared in case I (cf. for-

mulae (11)).
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The Surface Conditions and the Laws of Reflection and Refrac-

tion. For the given case our surface-conditions (3) assume the form

'-

or explicitly D^ = DP + DP, Ql
= Q + Q'

Replace here the P's, $'s and y's by their values on the given

dividing surface, x = 0, and we have

in(t
ySln

v v

rl 7i \ Vl ' fc_2. V * / _l_ J/ \

1 J/ #! Tlf v Tlf v

where we have put #' = v (cL above and formula
(
1 2A) ).

As in case I., the following relation must now evidently hold, if

these surface-conditions (28) are to be satisfied :

sin
<f>

sin
</>'

sin ^
v v v

l

the same relation between the v's and the <'s as that (14) found in the

preceding case. The same considerations as those above, and hence

the same familiar laws will, therefore, also hold here.

Determination of Amplitudes of Reflected and Refracted Waves.

As above, to determine the further relations that must hold between

the different quantities, in order that the surface-conditions (28) may
be satisfied, we write the same by relation (14) in the simpler form

Z)
1
&
1
sin

<j>i
= (Db + Db') sin <,

b
l
cos

<f>l
=

(b b') cos <,

By formulae (12) and (14) (cf. above), it is evident that the first and

last of these conditions are identical and can be written in the form

7 sin <f>

ft . / = b + b.
1
sin

4>i

Upon the assumption of the validity of the given surface-conditions,

which may be replaced by the two simpler ones

1 cos<

and
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we can now determine the unknown quantities V and lv the amplitudes

of the resultant electric forces acting in the reflected and refracted

waves respectively, as functions of known or given quantities. On

the elimination first of b
l
and then of V from these two conditional

equations, we find the following values for b' and l
l respectively :

, , _ , /sin
<ft cos (ft

- sin
</> 1

cos (ftA _ , tan ((ft- <ftj

\sin (ft
cos

<f> + sin
<ftx

cos t^/ tan
((ft + <^1

.(29)

and
, _,_
1 oil

2 cos (ft sin (ftx b ; (30)
sin

(ft
cos

(ft + sin ^ cos
(ft:

sin ((ft 4-^) cos (<ft-

The Reflected and Refracted Waves and the accompanying Magnetic

ones. By formulae (29) and (30), the reflected and refracted electric

waves, to which the incident waves (23) give rise, will be represented

by the component forces

taa(*-4|)X'
J

Q' = 6 cos
(ft

i o i / y sin $\- x cos $i\

and P^^
2

***-_ g
,(.-

*=S2

= J^ cousin 2^ /('-
!"m *l

;r
8

*')

, .(31)

respectively, and the accompanying magnetic waves by the component
forces

. inltJ**^

and 7

where

i i /,, ysin<^i :

2 cos
(ft

sin
<ft, (/-

:

? .
f , j-f- / 7

1
. .e ^ ll

sin
((ft + (ft1)cos((ft

-
(ftj

(ft1 =arcsin(-^sin(ftV
\ /

(32)

The General Case : The Oscillations make an Arbitrary Angle

with Plane of Incidence. It is easy to derive from the two par-

ticular cases I. and II. just examined the formulae that will hold for

the general case, where the electric oscillations (in the incident waves)

make an arbitrary angle with the plane of incidence (the icy-plane) ;

if we denote this angle by 9 and the (resultant) amplitude of the
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electric force acting in the incident waves by A, we can then resolve

that force into two, one at right angles to the plane of incidence,

and the other in that plane; the component oscillation at right angles

to the plane of incidence will then evidently be reflected and refracted

according to formulae (14), (18) and (19) of case I., and that in the

plane of incidence according to formulae (14), (29) and (30) of case II.

The forces acting in these component oscillations will evidently be re-

presented by formulae (20), (21), (31) and (32), after we have put there

(cf. Ex. 1 at end of chapter).

Reflection and Refraction of Elliptically Polarized Waves. If the

incident waves are elliptically polarized, we resolve the given elliptic

oscillation (force) into two, one at right angles to the plane of in-

cidence and the other in that plane, and treat each separately, as in

the above general case
;
the same formulae will then hold as in the

general case, only the phases of the oscillations taking place in the

plane of incidence and those at right angles to it will differ from

one another according to the degree of elliptic polarization of the

incident waves. It is evident that the reflected and refracted waves

will also be elliptically polarized.

Reflection and Refraction : Formulae for the Moments. Formulae

(18), (19), (29) and (30) are known as "Fresnel's reflection formulae";

they enable us to determine the amplitudes of the fwces acting in the

reflected and refracted waves from the form amplitude, angle of

incidence, etc. of the incident waves. To obtain the amplitudes of the

moments or oscillations themselves, we recall the relations that hold

between the forces and the moments to which they give rise ; namely
the latter are proportional to the product of the former and the

constant of electric induction D of the medium (cf. formulae (3)

and (7), I.). In one and the same medium, the same formulae will,

therefore, hold for the moments as for the forces ; of the above formulae,

(18) and (29) will, therefore, remain unaltered for the moments, provided
the a's and >'s denote there the amplitudes of the respective component
moments, whereas the other two formulae, (19) and (30), will evidently
assume the form

47T 4?r 2 cos <t> sin

v
.(34)

an(j
*T r t-r

-,
2 cos < sin -*

-
D

l

' D '"sin

where the index m denotes that the amplitude to be taken is that of

the moment or oscillation itself.
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By formulae (12) these formulae (34) can now be written

and

2 cos
<f>

sin
</>j

2 cos
<f>

sin
(^j

or, by the relation (14),

sin2 < 2cos</>sin sn < sn
sn sn

and
, sin2 < 2 cos

(f>
sin <j

[7n
~ m

sin2^ sin
(<t> + (f>l ) cos (<

-

, sin <^ sin 2^>

....(34 A)

m
sin <j sin

(< +
</>j)

cos
(<j> <$> l )

Perpendicular Incidence. Let us, next, examine the particular case,

where the incident waves strike the reflecting surface at right angles,

that is, where
i if i s\ /QF\\

(cf. formula (14)).

Here formulae (18), (19), (29) and (30) assume the indeterminate

a' a, H b-,

form ~ ==
A"

==
7r
=

n'

and cannot, therefore, be employed in the above form. To determine

the real values of these four quotients for this limiting case, we write

the given formulae in the form

sin
cos <

T
- cos^

<h-

COS
</>!
+ COS <

2 cos <

COS c/>, + COS

and

sn
COS - COS <j

COS <ft + COS
<t>t

2 cos <j>

COS
</) + COS (j

sn

replace here . . b
sin u)-i

<f>
= ^ =

0, and we find

its value from relation (14), then put
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(36)

It follows from these formulae that for v>v
1
not only a', the amplitude

of the reflected waves at right angles to the plane of incidence, but also

b'( b'), their amplitude in that plane, will be oppositely directed to the

respective component amplitudes a and b of the incident waves
;
that

b'(-b') is here oppositely directed to b is evident from the general

expressions (24) for P and Q', which for perpendicular incidence

reduce to F =
0, Q' = -foKH?) (

cf. also Fig. 32). It thus follows

that the reflected waves will interfere (partially) with the incident

ones, the resultant waves approaching in form stationary waves

(cf. pp. 13 and 14), as the expressions for the component amplitudes
a' and b' of the reflected waves approach in value those a and b of the

incident waves
;
this limiting case could not well be realized, since then

- would have to be infinitely large, that is, the incident waves would
v

i

have to be totally reflected, undergoing no change in amplitude upon
reflection. The resultant waves will, therefore, be (only partially)

stationary, their first (partial) node lying on the reflecting surface.

The Angle of Polarization and Common Light. It is evident from

formulae (36) and the general ones (18) and (19) that, when the os-

cillations in the incident electric waves are taking place at right angles

to the plane of incidence, the reflected waves can never be entirely

extinguished, even when the incident waves strike the reflecting

surface at right angles. On the other hand, it follows from formula

(29) that, when the oscillations in the incident waves are taking place

in the plane of incidence, the reflected waves will be entirely extin-

guished, when the angle of incidence < is so chosen that

for then tan (< + <

T)
becomes infinite and b' vanishes. When ordinary

(non-polarized) light strikes a reflecting surface at this particular

angle of incidence, the reflected waves will, therefore, contain os-

cillations that are taking place only at right angles to the plane of

incidence, the component oscillations in the plane of incidence being

entirely extinguished, that is, the reflected waves will be linearly

polarized; the particular angle of incidence, for which incident waves

become linearly polarized upon reflection, is thus known as the
"
angle of polarization." A glance at Fig. 32 shows that the angle of

polarization is thereby determined that the directions of propagation
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of the reflected and the refracted waves make a right angle with one

another (cf. formula (37)). For the angle of polarization formula (16)

evidently assumes the form tan
<f>
= - = n

Ql (cf. formula (37) ),
which is

PI
known as Brewster's Law and states that the angle of polarization is

that angle of incidence whose tangent is given by the index of

refraction w
01

of the two media. Since the index of refraction TI
OI

depends on the relative constitution of the two media in question, the

angle of polarization will vary for different media.

The General Case
;
Determination of the Planes of Oscillation of

the Reflected and Refracted Waves. According to Fresnel's theory,

the plane of polarization makes an angle of 90 with the plane of

oscillation; if the plane of oscillation of the incident electric waves

makes an arbitrary angle 6 with the plane of incidence, then their plane

of polarization will make the angle 90 + with that plane. Let us

first determine the planes of oscillation of the reflected and refracted

waves, to which plane waves incident at the angle < and whose

oscillations make an arbitrary angle with the plane of incidence, the

#/-plane, give rise. For this purpose, we resolve the given incident

oscillations (forces)
* into the two component ones

(y
sin

<|>
- x cos <f>\

t I

'

at right angles to the plane of incidence and

/ ?/ sin <|>
x cos <j)\

AooB0e*\~
~~

v '

along that plane. By formulae (18), (19), (29) and (30), these com-

ponent oscillations (forces), upon striking the reflecting surface, will

now give rise to the following reflected and refracted ones :

. / , \ . /, ysin<t>+xcos<l>\

sm

the components of the reflected waves, and

A cos^j. L/vJo v/

\COS(<f>-<f>l )

the components of the refracted waves.

*By "oscillation" we shall often refer to the force acting and not to the

resulting moment.
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On the other hand, we can now write the resultant reflected and

the resultant refracted waves in the form
/ ysiiKft+acosM / y sin fa

- x cos^
A'e (

.
i / and A,e

( ~^~
respectively, where A' and A

l
shall denote their resultant amplitudes.

If we denote the angles these (resultant) oscillations make with the

plane of incidence, the y-plane, by 6' and 6
l respectively, we can then

replace them by their component oscillations at right angles to and

along that plane, namely
ir.(t

y*<t>+xcos <t>\

A' sin 6'e ^ v

in
/

_ ysln0+a;eo80\

and A' cos 6'e ^ v '
respectively,

the components of the reflected oscillations, and

K t
ysinfo-xcosfox

^^ -.JL!!</ vi
'respectively,

the components of the refracted oscillations
;
here A', Av 6', O

l
are to

be regarded as unknown and to be sought.

On comparing these last expressions with the given ones (38) and

(39) for the component-oscillations in question, we must evidently put

tan
(< + </>!)

and A, sin 6,
=A sin 6

2 cos*n

2 cos (f> sin <f>

which give the following values for the angles or planes of oscillation

6' and O
l
of the reflected and refracted waves respectively :

(41)

tan B
1
= tan 6> cos(0-

Rotation of Plane of Polarization. By formulae (41) the plane of

oscillation of the above incident waves is rotated through given angles
both upon reflection and upon refraction. Since now the plane of

polarization, according to Fresnel, makes a right angle with the plane
of oscillation, the planes of polarization of the reflected and refracted

waves will make the angles 90 + 6' and 90 + O
l respectively with the

plane of incidence, where & and V the planes of oscillation, are
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determined by the formulae (41). If we denote the angles which

the planes of polarization of the incident reflected and refracted waves

make with the plane of incidence by 6, 0' and 0j respectively, we
find the following formulae for the determination of the two latter :

tan#' tan0 cos(<-
1 (41 A)

tan(0
- 90) cos(<

-
fa)

and similarly tan
:
= tan sec

(<
- ^

These two formulae give the following relation between 0' and
L

:

tan0'- - tan 0j cos
(< +

</>!) (42)

Summary. It follows from the above formulae :

1. If
(f> + fa

= 9Q, then 0' = 0, that is, if the incident waves strike

the reflecting surface at the angle of polarization (cf. formula (37)),

the reflected waves will be polarized in the plane of incidence (cf. also

Exs. 3 and 5 at end of chapter).

2. For (<+< 1)<90,cos(<+< 1)<cos(<- fa), and hence tan0'<-tan0,
that is, as < increases from zero, 0' will decrease in absolute value

until
(<f> + fa)

= 90, where it will vanish (cf. 1); for
(<f> + fa)> 90,

.cos(<f> + fa) will, in general, assume small negative values in com-

parison to large positive ones assumed by cos(<f>-fa) t
and hence

tan0'<tan0. 0' will, therefore, be smaller than 0, or the effect of

reflection will be to bring the plane of polarization of the reflected waves

nearer to the plane of incidence, the two coinciding, when the angle of

incidence becomes that of polarization (cf. also Ex. 6 at end of chapter).

3. sec(<- fa)>l for all values of
<f>,

and hence tan0
1 >tan0, that

is, the effect of refraction is to remove the plane of polarization

further from the plane of incidence (cf. also Ex. 7 at end of chapter).

The Amplitudes of the Reflected and Refracted Waves. Formulae

(40) give the following expressions for the resultant amplitudes of the

reflected and refracted waves (38) and (39) respectively :

fa

and
sm^

(43)
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(cf.
Ex. 1 at end of chapter), or, in terms of :

A * -

.......

Total Beflection. If the velocity of propagation in the first medium
or that of the incident waves is smaller than that of (the refracted)

waves transmitted through the second medium 1 (cf. Fig. 32), and, if

the angle of incidence is taken sufficiently large, nearly equal to 90,
no waves will enter the second medium, but all will be reflected back

into the first; this familiar phenomenon is thus known as "total

reflection."

For v<v
l
formula (14) then gives

where N= < 1
v
i

if now sin<>JV, sin^ will be larger than unity, which is evidently

only possible when
</>x

is a complex quantity (cf. below), that is, no

waves will enter the second medium, but all will be reflected back

into the first, as confirmed by observation. Let us now examine the

form assumed by the formulae of partial reflection for the particular

case of total reflection
;

for this purpose we shall first consider

here as above the two particular cases where the incident electric

oscillations take place at right angles to and in the plane of incidence.

Case I. : The Incident (Electric) Oscillations at _L to Plane of

Incidence. Here the amplitudes of the reflected and refracted waves

were given by formulae (18) and (19); these formulae must now

hold, when we replace there sin <

x
and cos <

x by their values for total

reflection, namely

and = A
\

008=
N'2

We can regard sin^ as replaced by the real quantity jf->l>
cos <j is imaginary, since -j~ is here larger than unity ;

we shall,

therefore, write it in the form

l ........................... (46)
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where i = *J 1 is the imaginary unit
;
the quantity under the square

root-sign then becomes positive.

Replace sin ^ and cos ^ by their values (45) and (46) in formulae

(18) and (19), and we have

- cos < /+cos 2< .2 cos- a . . _ = = a! ---^ - 1

K/sin2<-AT2 + cos< V 1-^V 2

and

2a cos
<j> _ /2 cos2

< .2 cos <\/~
-)l-N*

that is, the amplitudes of the reflected and refracted waves are here com-

plex quantities, whereas that of the incident waves is real. Complex

quantities as amplitudes can now have no physical meaning, but as

expressions for the quantities a' and a
l
we should be able to interpret

them physically. We have now obtained the expressions (47) on the

assumption that the incident waves underwent no change in phase
either upon reflection or upon refraction

;
the fact that the resulting

expressions for a' and a
1
are here complex would now suggest the

incorrectness of that assumption or, on the other hand, that these

expressions contain, in fact, changes in phase at the reflecting surface,

for the formulae themselves must be valid as such, since they
follow directly from our surface conditions; in which case we should

be able to write the expressions (47) for a' and a
l
in some such form as

and -

(cf. formulae (10)), where a, d
l
and S', S

l
are real quantities, the former

denoting the amplitudes and the latter the changes in phase sought.

The component electric forces R' and R
l acting in the reflected and

refracted waves would then evidently be given by the expressions

/ ysiiKft'+xcoscfr' \

R' = a'e ( ~^~
./ ysinfr-scosfr X

and R
l
= d

l
e v vi

(cf. formulae (10)).

Formulae (47) and (48) give now the two following equations for

the determination of the quantities a, d^ and 8', Sj sought :

/N* + cos 2<
a
( l-N*

and

(1
\^\JO f . A \JUO *fV Mil f -iY\ _ -j _/ ry .. n\

^~ i ^ -~-
)
= a1 e- tn6 i = a1 (cos?io1

- isniTio,),
1 -N2 l-N2 '
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or, since the real and imaginary parts respectively of each equation
must be equal, the four following equations :

a' cos nS',l-N'2

2a cos <K/sin
2

<
- N 2

_, . w
JT= =a smrcS,

5 sin n8 .

which evidently give

. 2 cos </>\/sin
2
</>
- N^\

tan nb = ~ J

(49)
<> _

and a, = --^ tan TIO, =
^/l

- ./V
2 cos

The Law of Refraction for Total Reflection. The first two formulae

(49) state that the incident waves undergo a change in phase but none

in amplitude and hence in intensity upon reflection. To determine

the behaviour of the refracted waves in the dividing surface or film

they cannot enter the second medium, since ^ is never less than 90

we first examine the form assumed here by the law of refraction (14),

sin d> sin <6, -

namely -1- = zi,

That this law may be satisfied for total reflection, sin <^ must be larger

than unity ;
this is now only possible, when the angle <^ is complex ;

let us, therefore, imagine it as replaced by the complex angle ^ + i<f>ly

and we have

sinf^ + i^ J
= sin ^ cos i<f>t + cos

|
sin ifa

= cos t^,

which can also be written in the exponential form

(50)

an expression that evidently assumes all values between 1 and oo for

real values of
<J>r For any given case of total reflection, that is,

for given v, v
l
and

</>,
we can thus imagine the angle of refraction as

*
Strictly speaking, T and vl denote the angle of incidence and the velocity of

propagation respectively within the dividing film.
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replaced by the complex angle ^ 4- i<f>v where <j is to be determined

as a function of 0, v
l
and < by the formula

= ^isin<; (51)

in which case the above law of refraction will be satisfied.

Direct Method of Treatment of Given Problem on Total Reflection.

On writing the angle of reflection for total reflection in the form

9+i$i, where <

x
is to be determined by formula (50), we could

evidently treat the above case of total reflection similarly to that of

partial reflection (cf. pp. 268-272), and we should obtain the same

formulae as those deduced by the above indirect method of treatment

(cf. pp. 283-285) ;
as this method is instructive, throwing light on the

behaviour of the refracted waves in the dividing film, we shall examine

it briefly here.

For the given case of total reflection we evidently have

R-aft'-

K.tJ*-
1 -V /

(cf. formulae (9) and (10)), whereas Ev according to the above, is to

be written in the form

ir
T

t _ y
sin (ir/2+tfa)

- x cos
(g/2+ifa)"j

R
l
= a

l
e L

'

i J.

Since now

^i)= v/l-sin2
(7

where the expression under the last square-root sign is evidently

a real quantity, we can write the expression for R^ in the form

R^a n -V ^
(52)

The positive sign must evidently be chosen before the square-root

sign in the last factor of this expression, for, otherwise, the further

we receded from the first medium into the dividing film, where x is to

be taken negative, the greater would be the force acting Rv R-^ must,

therefore, be written
. r yginCir^+tfa)"! nxVsin^ir/Z+ifa)-!

J^mfl^ L H J e ^
(52A)

Rapid Disappearance of Refracted Waves within Film. Within the

dividing film at the distance Ap the wave-length of the given waves,
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from the boundary of the first medium, that is, for x = -

factor of the expression (52A) for Ti^ would assume the value

287

the last

or, by formulae (5), (50) and (51),

which is evidently small. As we receded further into the dividing film,

this factor would now decrease rapidly in value, that is, the force E
l

would vanish and the refracted waves thus be extinguished almost

immediately.

Determination of the Amplitudes and Changes in Phase of the

Reflected and Eefracted Waves. To obtain the formulae for total

reflection by the given method, we make use, as above in the case of

partial reflection, of our surface-conditions
;
these are given by formulae

(3A'), where R
lt

a
:
and /^ are to be replaced by their values for the

given case of total reflection. We obtain the values for c^ and fiv on

replacing, as above in the expression for 1^ for partial reflection, the

angle ^ by the complex angle ir/2 + i^ in the former expressions

(cf. formulae (11)) for those component-forces. Keplace the R's, a's

and /3's by their values in the surface-conditions (3A'), and we have on

the dividing surface (x
=

0)

+a!e

and

..

These conditions can now evidently be satisfied only when

smj = sin
<f> = sin (ir/2 + i

v v'
,

hence, by formulae (12), which also hold here,

The conditions themselves then reduce to the following : the first

two both to

and the third to a,

cos
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That these two conditional equations may be satisfied, the quantities

a' and
a-^

must be determined by the same
; they evidently give

[cos<

cos(7r/2 + i<M~| fcos< cos(7r/2 -M^)!--
1

-- - d\---
v

i
' J L i J

and
1 v ^

which can be written in the form

,f~cos</> . N sm2
(7r/2 + ^)1)-l"|_ [~cos<

. Vsin2
(7r/2 + ^</>1 )

-
l~]}d I ~~1 &\ T 1

L v ^ J L v v
l

and

cos<
-t-~

i (55)

where the expression under the square-root signs is positive.

Of the equations (55) the former for the determination of the quantity

a' has now the form

a' (cos w' - i sin o>')
= a (cos &>' + i sin a/).

Since the real and the imaginary terms respectively of this equation

must be equal to the respective ones of the above conditional

equation for a', we have

cos d> , \/sin
2
(7r/2 + id>, ) 1

L = coso> and = smw
;

v v,

from which to is determined by the formula

_
-

.................... }
V
T

cos
</>

We can, therefore, write the former equation (55) for a' in the form

or &' = a<?
2W

,
.............................. (57)

where w' is determined by formula (56).

By formula (57) and the conditional equation

a
l

a + a',

we can write the quantity a-^
in the form

a
1
= a(l+e

2w
')
= ae

2S ......................... (58)

where d and Wj denote the amplitude and change in phase respectively

of the refracted force. To determine a and o^ in terms of a and </,

we write this equation between the same explicitly

a (1 + cos 2o/ + i sin 2o>')
= a (cos 2^ + ^ sin
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and we thus have the two equations

a (I + cos 2a/)
= a cos 2wj

and a sin 2 a/ = a sin 2*^ ,

sin 2a/
which give tan 2<o, =

,
= tan <o

1 + cos 2w'

and a2 = 2 2
(
1 + cos 2a/)

= 4a2cos V,

or, if we replace here <o' by its value (56),

COS

and
2o- cos

<f>

-
[sin

2
(7r/2

.(59)

We observe that these formulae for the refracted waves and the above

(56) and (57) for the reflected ones are identical to those (49) found

by the former indirect method
;
to obtain the latter we replace here

and sin(7r/2 + ^i) by their values, the quantities N and
n

respectively employed in the previous method
;
the changes in phase

2w and 2^ here are the n8' and n8
l
of formulae (49).

Case II. : The Incident (Electric) Oscillations in Plane of Incidence.

The treatment of this case is similar to that of case I.

By formulae (45) and (46), formulae (29) and (30), which hold for

partial reflection, will assume here the form

,, _ , sin
<jg>

cos </>
- sin ^ cos

sin < cos
</> + sin ^ cos

= 6
-,

'. (60)
cos

26 cos <t> sin <-h Ny
sin <^ cos </> 4- sin ^ cos ^ ^ ^ /sin

2
<^>

- + sn*l
Since these expressions for the amplitudes are complex ones, we

must abandon here, as in case I., the assumption of no change in phase
T
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on the dividing surface, and thus write the expressions for the

quantities b' and 6
X
in ae form

.(61)

where 6', 6
X
and /&', w^ shall denote the amplitudes and changes in

phase respectively sought.

By formulae (60) and (61) we have then the two following equations

for the determination of the quantities b', \ t n', n^ :

-
. cos *

"I

2
< J

= &' (cos wf - i sin nf)

2 cos2
</>

2<> -1
~

or, on separating the real and the imaginary terms, the four equations :

^2
(J^

2 cos2
< + 1)

- sin2
</) _ T> ,,~

,. , .

which srive

The first two formulae state that the incident waves undergo a

change in phase nf but none in amplitude upon reflection.

Direct Method of Treatment of Given Case. Lastly, let us treat

the given problem by the direct method applied above to case I.

Here the component electric forces P, Q, P, Q' will be given by for-

mulae (23) and (24) (R =K =
Q), whereas, according to the given

method, the expressions for the component forces P
13 Q1 (El

=
Q) will

have to be written in the form
. r yrinfr/2+i00-a;coa(i

p1 -ikrfii(v/2+tft)
L vi

~
_ y sin (ir/2+t^!)

- x cos (i

d = ^ cos (w/2

"
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or
l
=

l
sm7r + <>

l
e

.r _

Ql
= \ COS (?r/2 + iffri

(cf. p. 286); from which it is evident that both P
l
and Ql

will vanish

at a very short distance within the dividing film, that is, the refracted

waves will be extinguished here, as in case L, almost immediately

(cf. p. 287).

Determination of the Amplitudes and Changes in Phase of the

Reflected and Refracted Waves. To obtain the formulae for the

amplitudes and the changes in phase after incidence, we replace

the P's, Q's, and y's by their values in the surface-conditions (3B'),

and we have on the dividing surface (x
=

0)

r

Z^ sin (77/2 +^)0 L

r
yBinQr/2+ifr)-|

b^ cos (jr/2 + i(^^}
e L

= b cos <f>e
x v

'

b' cos <'e

7 . r y sin (7T/2 -H<f>i)~l

and 5i/*L*~ ~~^~~

~~0 v'

(cf. formulae (27) for the values of the y's, where <

x
is to be replaced

by 7T/2 + i^ in the expression for y^.
These conditions can evidently be satisfied only when

sin </> _ sin <' sin (?r/2 + i<f^]

v v' Vj

hence, by formulae (12), <' =
</> (v^v) ;

the conditions themselves then reduce to

jDj^ sin(7r/2 + i^) =

6j cos(7r/2 + i^) = (6
1-

5') cos

and 1

v
i

By formulae (12) and (63) the first and last of these conditional equa-
tions will be found to be identical. That they may be satisfied, the

quantities b' and ^ must be determined by the same; they evidently give

b' [v cos ( +
0j_
cos (?r/2 + j^j)]

= b [v cos <
- ^ cos (w/2

and 6, fv cos <f> + v, cos (7r/2 + 16, )] = 26y, cos c/>,1L 1 \ r ' 1*J 1
vv^ r)
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or

V [v cos (f>
-
i\ \/sin

2
(w/2 + i^)

- 1
]
= b [v cos <p + iv^ \/sin

2
(ir/2 + i^)

-

and

!
v cos -

1\sn7r + - = ^ cos <>,

where the expression under the square-root signs is positive (cf. p. 284).

The equation for b' has now the form

b' (cos x - i snl x) = b(cos x + * sin x)

or b' = bezi*', .............................. (65)

where \ ig to ^e determined from the two equations

v cos < = cos x an(i v
i \/sin

2
(7r/2 + i^>

-
1)
= sin x' j

/
^
1

whichgive tan X = J

To obtain &
x
in the form

b-^
= b-^^

we replace b' by its value (65) in the last conditional equation (64),

and we have

or explicitly

bv^l + cos 2/ + i sin 2x')
=
5^(008 2xj + i sin

hence bv
l (1 + cos 2x')

= \v cos 2xj.

and bv
l
sin 2 x'

= \v sin 2Xi ',

which latter give
sin2x

'

tan 2v, = = ^x
;-,

= tan x
1 +COS 2x

and &!
2 = 2b\ (1 + cos 2x')

= 462 -^- cos2
x' ;

lastly, replace here x' by its value (66), and we have

tan2Xl = -1

T1 200, cos
and 6. = .A . .

..(67)

We observe that these and formulae (65) and (66) are identical to

those (62) found by the previous method; v/vl and sin(x/2 -M^j) are

the quantities A/" and ^~- respectively of formulae (62), whereas the

changes in phase, the 2x's, were denoted there by the nf'a.

The General Case; the Reflected Waves Elliptically Polarized.

It follows from formulae (49), or (56) and (57), and (62), or (65) and (66),

that incident waves undergo a change in phase but none in amplitude
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upon total reflection and in both cases I. and II.; but this change in phase
is not the same in the two cases. If now the oscillations of the incident

waves make an arbitrary angle 6 with the plane of incidence, their two

components at right angles to and in the plane of incidence will, there-

fore, undergo different changes in phase upon total reflection, and

hence the reflected waves will, according to Chapter III., be elliptically

polarized. The ellipses described by these oscillations will evidently

be determined here alone aside from the angle 6 by the difference

between the changes in phase suffered by the two component oscilla-

tions at the reflecting surface, since the amplitudes of those components

undergo no change upon total reflection (cf. formulae (49) and (62)).

Let us next derive the expression for this difference between the

changes in phase and then examine the paths or ellipses described by
the oscillations of the reflected waves.

Determination of the Difference in Phase between the Component
Reflected Oscillations. By formulae (49) and (62), the difference r&A'

between the changes in phase of the two components of any linearly

polarized oscillation upon total reflection will be given by the expression

raA' = 7i(f'-S') _
2A^cos <K/sin2<i -N2 2 cos <K/sin

2
<
- N*= arctan AT9 . , 79 ~. ^- r-^-r

- arctan222
<

- 2
(

or, by the trigonometric formula

arctan u - arctan v = arctan
1 +uv

f 2 (N2 -
I)

2sin2^> c
' = arctan

f_2 (N2 -
I)

2sin2^> cos framfy - N*
J

[ x [N* + cos 20] + 4 J/V2cos2
<(sin

2
< -

f-
2^ " 1

>

UV2
CN"

2cos2
c/>-

arctan
" cos

^arctan .-(68)
\ N2co$2

<f>
- sm2

< cos 2</> /

By the trigonometric formula

u 1
arctan u = arcsin .

= arccos . t

this difference in phase n& can also be expressed as an arcsine or arc-

cosine, namely

aresn

........
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Analytic Expressions for the Incident and Reflected Oscillations.

Let us represent the force acting in any incident electric wave by
the function

> . /, 11 sin (t> - x cos <j>\ /nn ^A sin It--
-), (69)

where the oscillations are supposed to be taking place in any plane #,

referred to the plane of incidence
;
we are choosing the real part of the

complex function employed above (cf. p. 280) in the ensuing investiga-

tions for simplicity. Since now the two components of oscillation,

that at right angles to the plane of incidence and that in that plane,

undergo only changes in phase upon total reflection, the respective

component forces acting in the reflected wave will, therefore, be given

by the expressions

A sin Osiun (t-

.(70)
/ . y sin 6 + x cos <f>and Aeo&98W.n(t-Z
\ v

where the changes in phase n& and n{' are to be replaced by their

values from formulae (49) and (62).

FIG. 33.

If we refer the component forces (70) to a system of rectangular co-

ordinates of, y', sf, in which x' shall lie in the plane of incidence, the

x?/-plane, and at right angles to the direction of propagation of

the reflected wave, y' be normal to that plane and z' coincide with

the direction of propagation of the reflected wave, as indicated in
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the annexed figure, we can then write the component forces P', Q', R'

referred to this new system of coordinates in the form

-i-01

Q' = A sin

E' = 0.

In Figure 33 the y' (^)-axis is normal to the x'z' (#?/)-plane, the plane
of the paper, and is directed towards the reader ;

AB is the projection

of the plane of oscillation at any point P of the reflected wave upon
the x'z'

Determination of Path of Oscillation in Reflected Wave. To deter-

mine the path of oscillation at any point P of the reflected wave (70A),

we must now eliminate the time t from the equations (70A) ; for this

purpose we write the same explicitly, namely

F =A cos cos n ( - + f
'

J
sin nt - sin n ( - + f

J
cos nt

,

Q' = A sin cos n ( - +
S'J

sin nt - sin n (- + S'
J
cos nt

,

or F =

(72)

where A
1
=A cos6cosn(- + fM

A
2
= A cos 6 sin n I- + f

'

J

(#'

\
+ 8' }

v )

B*= -A sin sin n (
-

-f 8' }

\v J ,

On eliminating t from equations (71), we have

(B^P -A$J + (Bf - A^QJ = (A.B,
- A.Btf

or (B* + 2
2
)P'

2 +W +A2
) Q'

2 ~ 2 (^A + A.
2
B

2)PQ'

= (A,B,-A lBtf, ........................... (73)

the equation of an ellipse (cf. p. 83).
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On evaluating the coefficients of this equation, we find

B* + B* = A* sin2?, A* + A* = A* cos2
0,

- 2(A& + A
2
B

2 )
= - 2^4 2 sin cos

[cos
n (~ + f

)
cos n (~ + X

+ sin n (
- + } sin n (

- + $]
\0 / \ /J

= - 2^ 2 sin cos cos n (f
' -

S')
= - A 2 sin 20 cos wA'

and

^ - ^ 2 = - ^ 2 sin (9 cos fsin n + \ cos nfsi

.(74)

= [A
2 sin (9 cos sin n (f

' -
S')]

2 = ^ 4 sin2 cos2 sin2?iA^

The equation (73) of the path (ellipse) of oscillation at any point of

the reflected wave (70A) will, therefore, assume the definite form

sin20P'2 + cos2
0$'

2 - sin 20 cos n&P'Q' = A* sin2 cos2 sin2
%A', . . . (75)

where coswA' and sinwA' are to be replaced by their values from

formula (68A). We observe that the coefficients of P'2 and Q'
2 are

functions only of the angle and not of the difference in phase wA'.

Transformation of Ellipse of Oscillation to its Principal Axes.

Let us, next, transform the equation (75) of the ellipse of oscillation

at any point of the reflected wave (70A) to its normal form

p2 Q>"2.

F+ir- 1' ...............................
<
76

>

where P" and Q" shall denote the component forces acting along its

principal axes a and b respectively. For this purpose we make use of the

same transformations as those employed in Chapter III., Exs. 20 and 21 :

We denote the new coordinate axes, the principal axes of the ellipse

sought, in the x'y' plane, by u and v respectively, and the common angle
these axes make with the #' and y axes respectively by w

; the follow-

ing relations then hold between the component forces P', Q' and P", Q" :

P' P" cos to - Q' sin W 1

Q' = P"sin<o + Q"coseo j

........................ '

(cf. Fig. 33), where o> is to be determined thereby, that the term (its

coefficient) P"Q" in the equation of the ellipse of oscillation sought
vanish (cf. formula (76)). .Replace P' and Q' by these values (77) in

the equation (75) of the ellipse of oscillation, and we have

sin2 (P"
2 cos2w - 2P"(T sin <o cos w + Q'"

2 sin2w)

+ cos2
(P"

2 sin2o> + 2P'(r sin w cos o> + Q"
2 cos2

<o)

- sin 20 cos n&! [P
/2 sin w cos w + P"Q" (cos

2
<o - sin2w)

- Q" sin o> cos
o>]

= ^ 2 sin20cos20sin2
7iA',
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or

P"2
(sin

2 cos2
to + cos2 6 sin2 to - sin 2 6 cos %A' sin to cos to)

+ Q"
2
(sin

2 sin2 to + cos2 cos2 to f sin 20 cos ?iA' sin o> cos to)

- P'Q" [2 sin2 sin to cos to - 2 cos2 6 sin to cos to - (78)

+ sin 2 cos TiA' (cos
2
to - sin2

to)]

= ^ 2 sin2 0cos2 0sin2 ?iA'

That the term P"Q" of this equation may vanish (cf. formula (76)),

its coefficient must evidently vanish, that is,

2 sin2 sin to cos to - 2 cos2 sin to cos to

+ sin 2 cos %A' (cos
2
to - sin2to) = 0, (79)

or cos 20 sin 2to - sin 20 cos %A' cos 2to = 0,

the equation for the determination of the angle to
;

which gives tan 2to = tan 20 cos rcA', (79A)

1 1 cos 20
and hence sin2

to = - - -

1 1 cos 20
COS2

to = - + -
f=

2 2 Vcos2 20 + sin 2 20 cos2%A'

1 sin 20 cos?iA'
and sin to cos to =

.(80)

where the signs before the square-root signs have been so chosen,

that the conditional equation (79) is satisfied.

By formulae (80), we can now write the equation (78) of the ellipse

of oscillation sought in the form

7>"2 (--- cos2 20 1
,
sin2 20 cos2 7iA' \

2 2 ,/^W20/9 , siTi2 Ofl P.n2 OT A' 2

cos2 20 I sin2 20cos2rcA' \

2 Vcos2 20 + sin2 20cos2 7iA'
+

2 x/cos2 20 + sin2 20cos2 wA',

or

P"2
(l

2A 2 sin2 cos2 sin2wA'

hence in the form (76) sought

-
Vcos2 20 + sin2 20 cos2 raA' 1 + Vcos2 20 + sin2 26> cos2wA'

A 2
(l cos2

2(9+sin22(9cos2?iA
/

)

(8U)/
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The Refracted Waves for Total Reflection. We have seen above

that for total reflection the refracted waves were extinguished almost

immediately upon their passage into the transition film, and in both

cases I. and II.; in the general case, where the oscillations of the

incident waves make an arbitrary angle with the plane of incidence,

the refracted waves will, therefore, also vanish within the film, so that

their further examination becomes superfluous.

Approximate Validity of Reflection Formulae ;
the Reflected Waves

Elliptically Polarized for Angle of Polarization. The formulae for

partial reflection, (18)-(43A), are confirmed most approximatively by

experiment, except when the incident waves strike the reflecting surface

at an angle equal or nearly equal to the angle of polarization, when the

reflected waves are found to be more or less elliptically polarized.

Brewster* first observed this phenomenon ; subsequently his observa-

tions were confirmed and stated in definite form by Airyf and then

by Jamin,| the latter examining a great number of solids (metals) and

fluids. The deviation from the linear polarization was found to depend
not only on the reflecting surface employed but also on the condition

of that surface, a polished or dirty surface exhibiting a greater devia-

tion from the linear polarization than a perfectly clean one. The

explanation of this elliptic polarization is, therefore, evidently to be

sought in the constitution of the reflecting surface or, as might be

supposed, in the fact that the thickness of the transition film at the

reflecting surface has an effect on (the form of) the waves emitted from

the same (cf. p. 301). On deducing the surface conditions employed

above, we have now neglected this very thickness of the film and

retained only terms of the null order of magnitude in that quantity.

Surface Conditions of Second Order of Approximation. Let us now
examine the problem of partial reflection and refraction on the

assumption that the thickness of the transition film has an effect

on (the form of) the waves emitted from it. For this purpose
we must first establish the surface conditions that will then hold.

To obtain these conditions of the second order of' approximation,
we integrate our fundamental differential equations (1) and (2) through
the given transition film in the direction of normal to same, here the

ic-axis, and we have, on the assumption that M remain constant

throughout the film
(cf. p. 6 and foot-note p. 299),

*
Philosophical Transactions, 1815, p. 125.

t ,, ,, vol. i.
, p. 25; and Poggenclorf's Annallen, Bd.

xxviii.

I Annales der chimle et de physique, iii. serie, torn. xxix. and xxxi.

Cf. also Curry, Theory of Electricity and Magnetism, v., pp. 37-39.
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1 d f nD7 (dp . (dy, "1

-
-j-. \

DPdx= -f-dx -\-j
L dx

v
Q dt] J dz J ay

299

and

dp

.(82)

where the index or 1 denotes that the component force in question

is to be taken on the right or left hand side respectively of the film,

that is, in the medium or 1 respectively (cf. Fig. 32).

According to the surface-conditions of the first order of approxi-

mation (3A), the quantities DP, Q, B, a, /?, y remain approximately
constant throughout the film, that is, they differ by quantities of

the order of magnitude of the thickness I of the film in the two

adjacent media. We can, therefore, put these quantities before the

sign of integration in the integrals of the surface-conditions (82)

sought, assigning them the values assumed in either medium, and the

values of the given terms, which are themselves of the first order of

magnitude in l
t
will differ from the actual values by quantities of the

second order, which we are rejecting here. The first and fourth con-

ditions then lead to identities, two of the differential equations (1)

and (2) themselves, whereas the other four assume the form

rl P C rlv
j.rj. ui//s-*i . __ tv./r T I \JjJj -fi

T^} dx
-A-^Jy-^-^
_ n _ n n dp

i (
dx

To obtain the two remaining surface-conditions, we treat the two

conditional equations

* Here, as in the above and the following investigations, the constant of mag-
netic induction M is assumed to remain constant throughout the transition film,
that is, it is assumed to have approximately one and the same value in all

(transparent) insulators (crystals), as confirmed by empirical facts.
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in a similar manner to the differential equations (1) and (2), and we find

and

We obtain the conditional equations (83) on differentiating our

fundamental equations (1) and (2) respectively, the first with respect
to x, the second to y and the third to z, and adding.

Surface Conditions for ^-Plane as Plane of Incidence. For plane
waves propagated in the ay-plane (cf. p. 267) the above surface con-

ditions will evidently assume the particular form

, ,

y = y + y' + - -JL1

dR, , da,

v dt

. n IMdy*.
'\
= y + v -3T

# at

.(84)

where the component forces are to be replaced by their values on

the dividing surface x = and

(84A)

I denoting the thickness of the film; the component forces without

dash or index (1) are those acting in the incident waves and those with

dash or index (1) the forces acting in the reflected or refracted waves

respectively.

Problem on Reflection and Refraction. As above, let us examine

here the two particular cases, where the (incident) oscillations are

taking place either at right angles to or in the plane of incidence.

Case I. : Electric Oscillations at _L to Plane of Incidence. Here

(cf. p. 268). If we represent the electric force acting in the incident

waves in the form
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y sin $ - x cos
<f>

those acting in the reflected and refracted waves will

evidently be given by the functions of the form

,
inlt-

and
y sin <fo

- x cos <j

^i

.(85)

(cf. formulae (10) and p. 284), where n& and n^ denote the changes in

phase of the reflected and refracted waves respectively, as they leave the

film. Such changes in phase must evidently be introduced here, where

we are employing surface conditions, in which the thickness of the transi-

tion film cannot be neglected. On the other hand, it is easy to show

that the given surface conditions can be satisfied only when such

changes in phase are assumed (cf. below), a', a
x ,
n& and

n8-^
are to be

regarded here as unknown
; they are determined later from the surface

conditions.

Eeplace the R$ by their values (85) in formulae (2A), the

particular form assumed here by our fundamental equations (2),

and we find, on integrating the same with respect to
,
the following

expressions for the component magnetic forces acting in the incident,

reflected and refracted waves respectively :

-a a
If

cos

M

a = -a

$ (-

cos t^_ydn
1
- a! eoB 1

_^

.(86)

For the given system of oscillations, namely electric ones at right

angles to the plane of incidence and magnetic ones in that plane, our

surface conditions (84) will evidently reduce to the following three :

* Cf . foot-note, p. 299.
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.

Q
dt dy

.(87)

Replace here the component forces by their values on the given

dividing surface, x = (cf. formulae (85) and (86)), and we have

M v
l

a
,

If

M v

. /

_ . ? g ('

=ae ,

+ a e

and

+
sn

^....(88)

That these conditions may be satisfied for all values of / and #, the

familiar relation

sin <> sin <>' sin <

(cf. p. 271) must evidently hold. By this relation the conditions

themselves will evidently reduce to the following two :

a
COS- / \

(cos Wj+t sin <!)=:
- COS

M v

P

, ...
(cos o> + 1 sin w)

Jr.2,Sm

(cos o>' + i sin a/)
- ina. &- (cos w, + i sin w,

v
o

(cos Wj + i sin Wj)

and ^ (cos Wj + z sin Wj)
= a (cos w + i sin

o>) + a' (cos a>' + i sin a/)

m^Z
cos

fti
(cos Wj + z sin Wj)

, -.(89)



where

REFLECTION AND REFRACTION,

sin

/, sin
</> S

A / sm< A ,

*=n(t-y -8 \ = n(t-y --8 \ = a>-n

/
,

sin <, \ /. sin <f> ~ \

'i^^V ^~^" v
=?l

v
y~^~ v

w ~ ^

303

. ...(90)

Separate the real and imaginary parts in these two conditional

equations (89), and we have the following four in their place :

+ na-. S- sin w, - na, -^
vJ n/l

Vn COS (h-, Vn COS <t> i

^ u r i sm to a sin to -f- a
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which we can write in the form

A cos w = B sin w

B cos GO = - A sin o>

, (92A)G cos w= Dsmr-

D cos w = - (7 sin i

i , COS ft, . VQ COS ft , Vfi COS ft' ., ^where A = - a, -. - cos no-. + a -. -a -A Cos noM v l M v M "'

, . <> / Vn COS 0' .

l sin n8, + a -.- sinM v

. (93)

C= a, cos rcS, - a - a' cos w8' - wo, /
COS<^ 1 sin w(
v
i

p(~)a (4\D = - ^ sin wSj + a' sin nfi* - waj 2 SL cos wSj

On eliminating w from the four conditional equations (92A), we

evidently find A =
0, B = 0, (7=0, D = 0; (94)

that the four conditional equations (92A) may be satisfied, the four

coefficients or expressions A, B, C and D must, therefore, all vanish,

that is, the conditional equations (92A) may be replaced by the simpler-

ones (94).

The conditional equations (94) evidently suffice for the determina-

tion of the four quantities a', av nS' and n8
1 sought ;

observe that these

quantities are functions of the medium constants, the v's, the angle
of incidence ft, the integrals I and p taken through the given film

and n, the period of oscillation of the waves employed.

Assumption of Changes in Phase at Surface demanded by Surface

Conditions. It is evident from formulae (93) and (94) that, if we
assume no changes in phase at the dividing surface, the surface con-

ditions (87), etc., cannot be satisfied; for put n8' = n8
l
= Q in the

conditional equations (94), and we have

. VH COS ft, Va COS ft . fln COS ft'A rt _ ' -i i /y
"

_ ft
' *

-/A tt/1 . -- T^ \JU -m jf tV *m -

LM v
l

M v M v
'

i
'

Vn i sin

which evidently give a
x
=

0, a' = -
a,
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that is, the given waves would not enter the second medium, but would

be totally reflected at the dividing surface and for all angles of

incidence
</>,

a result that is not confirmed by observation.

Case II. : Electric Oscillations in Plane of Incidence. If we repre-

sent the electric force acting in the incident waves by the function

.

be \

its components P, Q, R will be here

(cf. formulae (23)). As in case I., the component forces acting in the

reflected and refracted electric waves will have to be written here,

where the thickness of the transition film cannot be neglected, in

the form
in

/
t

y&in<t>'+xcos<f>'

P = // sin <$e
*

Q = -b' cos $e
n
\

(cf. formulae (24)) and

P
1
=

&j
sin (f)^

\ vi
J

%

respectively, where wf and n^ denote the changes in phase of the

reflected and refracted waves respectively, as they leave the film.

As in case I., such changes in phase must be assumed here in order

that the given surface conditions may be satisfied (cf
. below). 5', b

lt wf
'

and
Tifj

are to be regarded here as unknown and to be determined from

the surface conditions.

Replace the P's and Q's by their above expressions in formulae (!B),

the particular form assumed here by our fundamental equations (1),

and we find j) in ( t
y sin 4.-* cosM

= \ v '
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(cf. p. 274). The fundamental equations (2s), which hold here, give

a = /3
= a=/3' = a

l =/3l
=

and the familiar relations (12) between the velocities of propagation
and the medium constants.

By the relations (12) we can also write the magnetic forces (y, y'

and yx )
in the form

. /_ yd

(cf. formulae (27)).

For the given system of oscillations, namely electric ones in the

plane of incidence and magnetic ones at right angles to that plane,

our surface conditions (84) will evidently reduce to the following three:

Replace here the component forces by their values on the given

dividing surface, and we have

(.

y sin <f>i , \ /
f~~n ~*v5J^_*M

Mv

Mv
. /. ysin^ \

.
/ r/sin^\

J, */*('- n-'V.icos^'-
/ y sin ^ >A iw /* ysfofa >\
\

~ "^ - ( ~^T- cos

.

-r^ T^J . .in It

and

Cf. footnote, p. 299.
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That these conditions may be satisfied for all values of y and t,
the

familiar relation

sin <j _ sin
<f>' _ sin <

V
l

V V

must hold. By this and the relations (12) the conditions themselves

will evidently reduce to the following two :

(cos Wj + i sin Wj)
= b (cos a> + i sin a>)

+ 6'-JL(cos a/ + i sin
a>') + ift&j

- cos ^(cos a^ + sin Wj

and &j cos </>1(cos Wj + i sin Wj)
= bcos<j> (cos CD + i sin o>)

- 6' cos <'(cos to' + i sin o/)
-

mbj/v-^ (cos o>j + * sin u^)

jVi
?HLz

(cos o^ + e sin Wj),

where

On separating the real and imaginary parts in these two conditional

equations, we have the following four in their place :

6, -=^- cos w, = 6 A cos w + b' |- cos o/ - %5, ^ cos <, sin o>,,

iffij JfV MV V
Q

b-, ^- sin w, = 6-^- sin o> + ft'-J^- sin cu' + 716, ^ cos 0, cos w,
Mv

l
Mv Mv v

and &j cos ^ cos o>
1
= b cos ^> cos o> - &' cos

<^>'
cos w'

sin2 <^\ ,-
&i*i-jr)

sm w
i ?

X
cos ^ sin Wj

= J cos < sin w - 6' cos
<f>

sin w'

, n"^
v^

~
g lf?1 "V^J

cos Wr

These conditional equations are similar in form to those (91) for case

I.
; on expanding w' and Wj as functions of oj and the fa and eliminating

<u, we find, therefore, similar conditional equations to those (94) for

the preceding case, namely
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ft, -y- sin nt, + V 9- sin nt' - rib^ cos d>, cos %, = 0,1 Mv
1

Mv v

COS <j COS
Tlfj

- & COS
</> + 6' COS <$>'

COS %'

sin2>\ . . _

sm n =

- ^ cos
4>i

sin wfj
- 6' cos

<j>
sin nf

These conditional equations evidently suffice for the determination

of the four quantities &', bv n and wfj sought; observe that these

quantities are functions of the medium constants, the v's, the angle of

incidence
<j>,

the integrals I and j, and n
t
the period of oscillation of the

waves employed. On the assumption of no changes in phase at the

dividing surface, the conditional equations (95) would assume the form

Vj V V

&!
=

0, hence V = -
5,

^ cos ^ - & cos < + 6' cos
(/>
=

0,

^ = 0, hence b' = b;

that is, on the given assumption the above conditions could not be

satisfied.

General Problem : Changes in Phase of Component Oscillations
;

Reflected and Eefracted Waves Elliptically Polarized. A comparison
of the conditional equations (95) for the changes in amplitude and

phase for electric oscillations taking place in the plane of incidence

with those (94) for the changes in amplitude and phase for electric

oscillations taking place at right angles to that plane shows that

incident oscillations will undergo different changes both in amplitude
and phase, according as they are taking place in or at right angles to

the plane of incidence. If the incident oscillations make an arbitrary

angle with the plane of incidence, the general case (cf. pp. 276-277),
their component oscillations in and at right angles to that plane will,

therefore, undergo different changes in amplitude and phase both upon
reflection and upon refraction, and the resultant reflected and refracted

oscillations will thus be both elliptically polarized, as confirmed by
exacter observation (cf. p. 298). For the actual determination of the

changes in phase nS', nSv n' and nflt
see Exs. 8-11 at end of chapter.

Reflection and Refraction of Purely Spherical Waves. Before we

proceed to the examination of the primary and secondary waves upon
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reflection and refraction, let us briefly consider the behaviour of purely

spherical (electromagnetic) waves on the dividing surface of two

insulators. For this purpose we choose the same system of coordinates

with respect to the reflecting surface and any incident wave as that

employed on pp. 266-267 (cf. also Fig. 32) and examine the two

particular cases treated there. If we denote the distance of the source

of disturbance P (in the zy-plane) from the origin of our system of

coordinates, the point, where any incident wave strikes the reflecting

surface, by r, as indicated in the annexed figure, we can then evidently

FIG. 34.

represent the incident, reflected and refracted (electric) waves referred

to the given system of coordinates by the three functions

?- r

r + r'

m\ t-(~+~,

respectively (cf. formulae (6)), where r, r' and r
x
denote the distances

from the origin of our coordinates of the incident, reflected and

refracted waves respectively (cf. figure). On replacing here the r's by
their values (7) in terms of the x's, y's and <'s, we can write these

functions for the three waves in the form

a

r + y sin
<f>
- x cos

</>

a'

in<J>' + x cos <'

in(t--
> \

f + y sin ^-x cos
</>j

P /r ysin^-xcos^X-l
L \v v\ JJ

.(96)

(cf. Fig. 34).
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We examine here, as above, the two particular cases, where the

electric oscillations are taking place at right angles to and in the plane

of incidence.

Case I. : Electric Oscillations at _L to Plane of Incidence. Here

and hence p' = Q'=,p1
= Q1

= Q
t

whereas the components E, R and R
l parallel to the -axis of the

electric forces acting in the incident, reflected and refracted waves may
be represented by the three functions (96).

To determine the magnetic forces that accompany the electric ones

(96), we employ formulae (2A), which evidently hold here ;
we replace

there the It's by their values (96), and we have

Mda^ gin
on<l>jn[t-~

r+to'A* + - XCM
*>~\

v dt r + (y sin
<f>
- x cos

</>)
v

or integrated

M r + (y sin
(f>
- x cos

<j>)
v

similarly

/ _ ^o a
'

M r + (y sin
<j> + x cos

<f>)
v'

and

_ _ ._M r + (y sin ^ x cos

am cos <

v dt r + (y sin
</>
- x cos

(f>)
v

or integrated

#_ _fo.
a

M r + (y sin
<f>

x cos <) v

similarly

ny
n r*r\c

P ~
"*" lur ^M. r + (y sin

<j> + x cos
^>')

v'

.. _
If + (y sin ^-a; cos

(97)

We observe that by the differentiations with regard to x and y (z)

the amplitudes =-
,

-
/ and = i can evidently be regarded as

r-r r + r r + i\

constant.

On replacing the R's, as and /3's by the above values, we find that

formulae (lA), which must evidently hold here, will be fulfilled,

* Cf. foot-note, p. 299.
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provided the familiar relations (12) remain valid; these relations give

v' = v (cf. formula (12A).

We, next, replace the B's, a's and fi's by their values on the dividing

surface x = Q in the surface conditions (of the first order of approxi-

mation) (3A'), and we have

where we have put v'-v (cf. above). These conditions must now

hold at all points on the given dividing surface and for all values

of t
;
different points on the dividing surface correspond to different

origins of systems of coordinates y, z in that surface
;
for this reason we

cannot put y = 0, except in the expressions for the amplitudes (cf . also

p. 317), on the given surface. That the conditions (98) may be

satisfied for all values of y, z and t, we must evidently put

sin (^ sin < sin

~V v

hence <' =
</>.

(99)

It follows from these relations that purely spherical (electromagnetic)
waves will obey the same laws of reflection and refraction as plane
waves do.

By the relations (99) the surface conditions (98) will reduce to those

that hold for plane waves (cf. p. 272) ;
the quantities a' and a

t will,

therefore, be determined by the same formulae as those (18) and (19)
that hold for the reflected and refracted amplitudes of plane-waves,
whereas the amplitudes of the given reflected and refracted (spherical)

waves will evidently be given by the expressions

r + r' T + y sin
</>' + x cos

<f>

and
r + y sn <^

- x cos
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where a' and ^ are to be replaced by their values from formulae (18)
and (19).

Case II.: Electric Oscillations in Plane of Incidence. The treat-

ment of this case is similar on the one hand to the preceding one

and on the other to case II. of plane waves. We find the same

familiar relations (99) for the angles of reflection and refraction as

in the above case, whereas the amplitudes of the reflected and refracted

waves are given by the expressions

V _V_
r + r' r + y sin

</>' + x cos <''

r + y sn x cos
</>j

where V and ^ are to be replaced by their values from formulae (29)

and (30).

Reflection and Refraction of the Primary and Secondary Waves.

Lastly, let us examine the behaviour of the primary and secondary waves

on the dividing surface of two media (insulators); for this purpose
we shall choose the most general type of such waves, those namely of

Problem 3, Chapter II. These waves or, more strictly, the component
forces acting in the same, which we shall consider here instead of the

component moments (cf. p. 266), are evidently represented by the

expressions

P - [i<0 + 7
2
)
-"M + '

37

3a, (P + y^) + 3a(a2ft + a
By)] sin n *-

with analogous expressions for Q and 7?, and

.
n . 1
sm w ~ cos w

with analogous expressions for ft* arid y* (cf. formulae (3) and (4), I.

and (43) and (44), II.), where, however,

=^ =| .............................. (100)

(cf. p. 267).

Let us denote the distance of the source of disturbance of the given
waves from the point on the dividing surface, where any wave from

* These component magnetic forces a, /8, 7 are not to be confounded with the

direction-cosines a, /3, 7 (a, /3, 7).
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that source strikes the same, by r
,
as indicated in the annexed figure ;

let x, y, ~z denote the rectangular coordinates, to which the given system
of waves is referred, their source being taken as origin of those

coordinates
;

the wave advancing along any vector r will then be

characterized by the direction-cosines a, ,#, y of that vector with

respect to those axes. For simplicity, let the dividing surface

be taken parallel to the yz plane. We choose the point on this

surface, where any wave from the source strikes the same, as origin

of a second system of rectangular coordinates x, y, z; let its z-axis

coincide with the normal to the given surface and be directed towards

the source and its y and z axes be so chosen in that surface that its

icy-plane coincide with the plane of incidence of the given wave.

FIG. 35.

Any incident wave of the given system, referred to the system of

coordinates
ar, y, z, will then be represented by the component forces

,(101)

P-ys^ltfP+y
1)-*

47T71

+ 7
2
)

COB *-

y
2
) + 3a(a2/3 -f a3y)]sin n It

with analogous expressions for Q and R, and

I

'

ft f ?* ^ ?*\
1

(a2y
-

3/3) 7= - sin n( t
j

,
... (102)
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with analogous expressions for /3 and y, where r denotes the distance

of the incident wave from the point on the given dividing surface,

where that wave strikes the same. It is easy to show that these

expressions satisfy our fundamental differential equations (1) and (2)

(cf. Ex. 12 at end of chapter).

The expressions in a, /3, y in the coefficients of the different terms

of the above expressions for the component forces will evidently

assume given values along any given vector?. In formulae (101) and

(102) these expressions are now referred to the coordinates x, y, ~z;

if we refer them to the coordinates x, y, z with origin at on

the given dividing surface, then

cos(r, a;)
= cos

(< + ?r)= -cos<, \

cos (r, y)
= cos (TT/2 -</>)

= sin
<j> t

[

.................. (103)

cos(r, j&)
= 0, J

where < denotes the angle of incidence of the given wave (cf. Fig. 35),

and the expressions themselves can evidently be written

+ 7
2
)
~

"( 2 + a
sy)

=
(&! sin

(f> + &2 cos <j>)
sin

=
26j

- 3
(bj_

sin
<f> + b

2
cos

</>)
sin

</>
= Bv

...(105)

and

a
2y-asp= -6

S
sin ^,

^

(106)

= 26
2
- 3 (6j sin

<#> + &
2
cos

</>)
cos

<f>
= B^

(a
2 + ^2

) + 3y (c^a

where 5
15

&
2,

b
3

denote the components of the resultant amplitude

coefficient a = \/a^ + a
2
2 + a

3
2
along the a;, y, 2 axes respectively; for

the values of bv 6
2,

&
3

in terms of a
x ,

a
2,

#
3
and a, ^8, 7 see Ex. 13

at end of chapter. For a confirmation of formulae (104) to (106) see

Ex. 14.

Expressions for Incident Waves. Referred to the system of co-

ordinates x, y, z, we can, therefore, write the above formulae (101) and

(102) for the component forces acting in the incident waves in the form



REFLECTION AND REFRACTION. 315

p= -57= \ sin w + -
tg cos w + 7=

i- sm w,
v2

(r
-

r) v (r - r)
2

(r
-

r)
3

^(r-r)
sin o> + TT7= r-9 cos w + f^sm W,

v(r-r)
2

(r-r)
3

J2 = 1 sjn w +
"-

a. cos o> + - -

v2
(r-
-

r) (r r)
2

(r
-

r)
{

and

sin
<ft

sin w + Mv2
(r-r)

0--

7 =

c//\i/q . .

- x
cos

<#>
sin-

r)

sn

where w = n(t )
=

\ v )

smw

,

sin
(j>
cos w,

...COS <f> COS to

y
2
(r-r)

2

, cos
</>)

sin w

^ sin <^ + 69 cos ^>) cos w,

r + y sin ^>
- a; cos

(108)

)
(109)

(cf. formulae (7)).

Expressions for Reflected Waves. It is evident that for any given
incident wave, characterized by given a, /?, y, only the quantities

ftj,
&
2> ^3 (

ft
i?

fl
2>

a
s)

^n ^ne expressions (104)-(106) will undergo changes

upon reflection and refraction (cf . Ex. 1 3 at end of chapter) ;
if b^, b

2',
b
B

'

denote the values assumed by the components b
lt
-b

2 ,
6
3
of the resultant

amplitude coefficient b = sjb^ + 6
2
2 + b

B
2 after reflection, the component

forces acting in the reflected wave, to which any incident wave (107)

and (108) gives rise, will evidently be given by the expressions

(110)

T
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where we have put v' =-v, and where, by formulae similar to (103),

AI= (6/sin < - &
2
'cos </>)

sin
</>,

A =
(J/sin </>

- &
2
'cos

<j>)
cos <,

/
=
26/

- 3 (A/ sin <
- &

2
'cos

2

' = 25
2

' -
3(&j'sin

< - 6
2
'cos

,(112)

and
' = n\ t (

J

= TI ( -H
/ (H^)

(cf. formulae (7)), r' denoting the distance of the given (reflected) wave

from the origin and
<j>

the angle of reflection.

Expressions for Eefracted Waves. Similarly, the component forces

acting in the refracted wave, to which any incident wave (107) and

(108) gives rise, will evidently be given by the expressions

P
l
= 11- sin Wj + 7-7= 4rg cos w1 -f- -T=

*ig
sin w

1;

~ 47mM 91 . 47T7i591 47rB01

Q-i
= OT= % sin 'jo, H ^ cos w, + -= **5 sin w,

,
s<T4-r^ v.^r-i-f'.V1

(r + rj)
3

and

sin
coj
+ -

v
cos

'31 'QI

r\s Sln w
i

v 01

^
8
(r4-r3

iin
<^> + &

21
cos

^>)
sin w

ou

7i
;

where, by formulae similar to (103),

cos ^) s^n ^j

cos ^) cos ^>

^>i + ,,.. ., 7
- v 31

vo sin d> cos to,,1

Mffff+Tir

^TrnVrJ)^
l + TIT 2/~ \9 COS ^ COS WU

JrPj'^+fj)
3

cos
(f>)

sin

J521
= 26

21
- 3 (bu sin

</> + 5
21

cos
<#>)

cos

"si
= "~

^31

I

and w, =

.(116)

........117)

* Cf. foot-note, p. 299.
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(cf. formulae (7)), r^ denoting the distance of the given (refracted) wave
from the origin 0, 4>i the angle of refraction and blv b

2l ,
6
31 the values

assumed by the components bv b
2 ,

5
3

of the resultant amplitude co-

efficient b = x/^
2 + b.2

2 + b
s
2 after refraction.

The Surface Conditions of First Order of Approximation. Let us

now examine the surface conditions for the above system of waves.

Since the expressions for the component forces acting in these waves

satisfy our differential equations (1) and (2) (cf. Ex. 12), the surface

conditions will be those already established; if we employ here the

surface conditions of the first order of approximation, where the thick-

ness of the dividing film may be neglected, the conditions in question
are the familiar ones

and
(118)

where we have put Ml
=M (cf. foot-note, p. 299).

Replace the component forces by their values on the given

dividing surface, # = 0, in the surface conditions (118) and we have, on

rejecting terms of the order of magnitude of the thickness of the film

(cf. above and p. 320),

/, r + wsin<f>'\ nB-.'
-I

p=^-
sin n

(
*

)
+ ~7^r cos n I

^~"

+^ sin n(t-

sin 7i -- +
nB r. /r ysin

^fcosTi t-(- +
"

^ L \ !
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with an analogous condition for the E's, and

nbo-i . F, h* ysin<f>A~l b^ F, ff vsin<f>A~|--Psinn f-( f*--ri + _L cosw J- - + ^ P]
VT- L \v >i /J Vr L \ 0i /J

sin w
J

r + y sin d>'\ b /, r + y sin <f>'\

v r

with an analogous condition for the /3's, and

Ks+
*n*)]

[(T
?/sin</>A~j

t (

- + ' *
)

A "l /_|

sin nit-

t

n (ft/sin (f>
- &

2
'cos

<^>)
. /

-|~ ^ sin 7i I t

, 'sin d> - &9'cos d> /_, r + y sin <i>'\i-r
.._.

2--i cos n t--^--r.
).

V2r2 \, v J

Laws of Reflection and Refraction and Determination of Component

Amplitudes and Changes in Phase from Surface Conditions: Total

Reflection of Incident Waves. The above six surface conditions must

now hold for all values of t and at all points on the given dividing surface
;

this is evidently only possible, when the familiar relation (12), namely

sin > sin <' sin <

holds between the <'s and the v's, and also when the coefficients of

the terms with one and the same factor sin co
1
= sin w' = sin w or

cos Wj
= cos a/ = cos w by the relation (119) the three w's then assume

one and the same form all vanish. The vanishing of these coefficients

leads now to the following ten conditional equations in place of the

above six surface conditions :

,! a_ , ,
o "*"

o o <^ o i> o i> o
v- r2 v2 r2 v2 r2
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_3_L ai _ a i a ,

i o - o T o
~

;
x
2

'

r2 v2
'

r2

-*-'QI -'-'Q -'-'Q-81 = _3 + _L
V-, V V

11
sin <^> 4- &

91

6nsin

The 5th, 6th, 7th and 8th of these conditional equations can evidently

be satisfied only when
b
3l
= and b

3

' = - 6
3 ,

and the last two only when

bu sin < + &
21

cos < =

and . b
1
sin ^> + b

2
cos ^>

=
6j'

sin
<f> + 6

2

'

cos
<f>.

Replace the 6's by these values in formulae (112) and (116), and we
have

A^= -
(bl

sin
<^> + b

2
cos

^>)
sin

<f>,

A
2

' =
(&j

sin
(f> + b

2
cos

<f>)
cos <,

sn + 2
cos <> sn <>,

sin <> + 6 cos <> cos <>,

and

Lastly, replace the A's and 5's by these values in the first four

of the above conditional equations, and we have
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that these four equations may be satisfied, we must now evidently put

It follows from these and the above relations that the given incident

waves (both electric and magnetic) would be totally reflected on the

surface of a second insulator, no disturbance whatever entering the

second medium, a result which we could hardly expect to be confirmed

by experiment.

Necessity of Assumption of Surface Conditions of Higher Order of

Approximation for Primary and Secondary Waves. In the above

development we have employed surface conditions of the first order of

approximation, where namely the thickness of the dividing film has been

neglected ;
on the assumption of the validity of these simpler surface

conditions we found now on pp. 268-282 that linearly-polarized plane

waves remained linearly polarized upon reflection and refraction, a result

that is also not confirmed by exacter experiment, whereas, on employing
the surface conditions of the second order of approximation, where the

thickness of the film was not neglected, we obtained a marked elliptic

polarization (cf.
Exs. 8-11 at end of chapter), as demanded by empirical

facts. Aside from the above analogy, there are other reasons why the

simpler surface conditions could hardly be expected to lead to correct

results for the reflection and refraction of the primary and secondary

waves; among others the facts that any system of primary and secondary

waves is represented by the derivatives of given functions with regard

to Xj y, z, whereas the existence (thickness) of the dividing film itself,

within which these very derivatives play a most important part, is

entirely overlooked, are hardly consistent with one another.

Difficulties Encountered in Derivation of Surface Conditions of higher

Order of Approximation. Elliptic Polarization of the Primary and

Secondary Waves according to Ordinary Laws of Reflection and

Refraction. To ascertain the behaviour of the primary and secondary

waves on the surface of a second insulator, we should evidently have

to employ surface conditions of at least the second order of approxima-

tion. The actual derivation of these conditions and the determination

of the component amplitudes and changes in phase at the dividing sur-

face from the same offer serious difficulties ;
the former evidently

demands the differentiation of the component forces with regard to

the coordinates (cf. formulae (84) and Ex. 12 at end of chapter),

whereby the changes in phase sought must be regarded as functions

of those coordinates, being different at different points on the dividing

surface, that is, for different angles of incidence
<f>.

This alone so
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complicates the problem, that all attempts to solve it must prove
fruitless. We observe only that the familiar relation

sin <
T _ sin <fi _ sin <

v
l

v v

must hold for all surface conditions that are derived on the above

principles from our differential equations (1) and (2) (cf. above), since

this relation is embodied in the existence alone of such surface con-

ditions and does not depend on the explicit form of the same (cf.

p. 271). The primary and secondary waves will, therefore, obey the

same laws of reflection and refraction (cf. formulae (14)), as the plane

and purely spherical waves do; they will also evidently become

elliptically polarized upon reflection and refraction, but the actual

determination of the respective ellipses of oscillation (changes in

amplitude and phase at the dividing surface) will have to be

abandoned.

EXAMPLES.

1. Show, when the direction of the electric force acting in the incident wave

Ae

makes an arbitrary angle with the plane of incidence (the xy-plane), that the

resultant forces acting in the reflected and refracted electric waves and in the

accompanying incident, reflected and refracted magnetic ones are given by
the expressions

and

A-Q-
0082(0-0!)

. / y siiKfri xcos<}>i\

I~5/
n
\

~
i i

respectively, where 0' = arctan(^ sin
J.

2. Show, when the incident electric wave of Ex. 1 strikes the reflecting surface

at right angles, that the component forces, electric and magnetic, acting in the

incident, reflected and refracted waves are given by the expressions
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a=0, =^ COS(,L

3. Show, when the electric wave of Ex. 1 is incident on the reflecting surface

at the angle of polarization, that formulae (18), (19), (29) and (30) assume the

form
a'=A sin cos 20, 0^ = 2A sin cos2 0,

b'= 0, &j
=A cos 6 cot 0,

or, if we express the angle of polarization in terms of the velocities of

propagation v and vlt namely
= arctan (

\

\ viJ
(cf. formulae (14) and (37)),

a'=-2.4 sin
+ V]

The component electric and magnetic forces acting in the incident, reflected

and refracted waves are then given by the expressions

V* + V-f

y sin< x
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. /. y sin
</>
- x cos

<f>\
y cos0 M*^I J

y=Acosdjf-e

a = - A sin 6 cos 20 -jj

Jf

. . I. y sin +# cos <^\
v

( , COS0 wl< I

-iJf^-e
*

= - A sin

Vn COS ?

a
}
= -2A sin cos2 ^ e

. / y cos <f>
- x sin <>\

J**.^ ~^
(
'"--__,

. / yvi-xv \vn 1 tnlt-- . )- V V V^v
?/ cos ^ - x sin <-

4. Show that formulae (4lA) and (43A) assume the following form for perpen-

dicular incidence (0= 0' = 1
= 0) :

tan 0' = - tan 0,

tan X
= tan 0,

that is, the plane of polarization undergoes a change only upon reflection (cf.

p. 282), and

(cf. p. 279), that is, the amplitudes of the reflected and refracted waves are

independent of the plane of polarization of the incident waves.

5. Determine the form assumed by formulae (4lA) and (43A), when the given
waves are incident at the angle of polarization

Formulae (41 A) assume here the form

(cf. p. 282), tane1= %"
Q

,

=
>

1

cos(20-ir/2) sin 20
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or, since tan0 v/v-^ here (cf. p. 280),

and formulae (43A) the form

a
2= 4^4 2cos4 ( 1 + sin2 cot2

20)

COS2(

or, in terms of v and v-,,

~\2

6. Show, when linearly polarized plane waves are reflected m times at the

same incidence and in the same plane, that their plane of polarization after the

rath reflection m
'

is given by

>

S(0 -
X )

where denotes the plane of polarization of the incident waves (cf. formulae

(41 A)).

The effect of such repeated reflection will, therefore, be to bring the plane of

polarization nearer and nearer to the plane of incidence ; if common light is

employed, the reflected waves will evidently become (partially) polarized in planes

that make small angles with the plane of incidence.

7. The plane of polarization 1>2m
of linearly polarized plane waves after their

passage through m plates (of glass) placed parallel to each other is given by the

expression
tan

l2m
= tan 9 sec2

(0
-

X ),

where denotes the plane of polarization of the incident waves.

The plane of polarization of the refracted waves in the first plate will be

given, by formulae (4lA), by

tan 0^= tan 0860(0-0!), ......................................... (a)

in the first layer of air between that and the second plate by

tan
l2

tan
ll
sec (0X

-
0)

or, by (a), and, since sec (0a
-
0) = 860(0-0!), by

tan
l2
=tan sec2 (0

-
0j),

and similarly in the second plate by

tan
l3
= tan

l2sec(0
-

X )
=tan sec3

(0
-

0j)

and after refraction out of that plate by

tan
l4
= tan

l3
sec ( X

-
)
= tan sec4(0

-
X ) ,

etc.

The effect of repeated refraction will, therefore, be a rotation of the plane of

polarization further and further from the plane of incidence (cf. p. 282) ; common

light would thus become (partially) polarized in planes that make approximately

right angles with the plane of incidence upon repeated refraction.

8. Determine the changes in phase nd' and nd
l
of the conditional equations

(94).
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On eliminating first a' and then a
x
from the last two equations (94), we find the

following values for az
and a' respectively :

a sin nS'

sin n (d'
-

5j)
- nl B2*H cos (5'

-
flj)

vi

a
(
sin wSj + w 5^1 cos w5j )

'

and a! =
sin n (5

f - 5
a )

- nl --^1 cos n (d'
-

?;
i

Replace e^ and a' by these values in the first two equations (94), and we have

_ Vo cos0 f Sin nSi+ ni
cos<

fti cos ndj. \cosn8' + nG sin w 5' sin M^ =

and

where we have put 0' = (cf. p. 302) and

^ _ P VQ ,
sin2

~VQ M ^a

The latter of these equations gives

tann*,= .

the value for n^ sought.

The former equation can now be written

_ w/
If

Vn COS 0i+ 7i6^ tan nd-i = ~~-
,M t'

v n
( wvjMG - v l cos cos 0] )

tan ??,5
1 + rn ( vjcos

- v cos
X )

COt 7ZO-r;
-----
2v OOfl (v\ tan ii51 + nl cos 0j)

Replace here tan ndl by its value (a), and we obtain the value for n' sought.

9. Show that the changes in phase n' and n^ of the conditional equations (95)

are determined by the expressions

tan nt =
n

^
v *

Vl^ ~
VVl^ cos ^ cos ^i )

?'
2

(
V COS + V

l COS X )

and cot nf '= H (
vQ2viH+vvi

MP cos eos 0i) tan ??Ji + ?7o
2

(
??
i
cos 0i

~ 7; cos 0)
2v 2

Vj (cos 0j tan ?i^
-
nff)

where tan w^ is to be replaced in the latter expression by its value, the former

expression, and
l gin20ff=-
i

-qDlvl -/.
10. Show for the angle of polarization that the changes in phase nd' and n f

of formulae (94) and (95) are determined by the expressions

s/
v

cotnd

and

where Q = P
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It is evident from these expressions that for the angle of polarization the

reflected oscillations will be highly elliptically polarized (cf. p. 298).

11. Determine the changes in phase n&, ndlt n$' and n^ of formulae (94) and

(95) for perpendicular incidence.

12. Show that the expressions (101) and (102) or (107) and (108) for the

component electric and magnetic forces satisfy our fundamental differential

equations (1) and (2).

On differentiating the component forces with respect to the coordinates, as

demanded by our differential equations (1) and (2), we must evidently employ
those coordinates, whose origin is at the source of disturbance O (cf. Fig. 35) ;

that is, the component forces are to be differentiated with respect to x - x, y -
y,

~z-z, the component distances from that source referred to the system of

coordinates x, y, z with origin at O (cf. Fig. 35). We observe, moreover, that

we cannot regard the component amplitude-coefficients, the A's, J?'s etc. of

formulae (107) and (108), as constant by these differentiations
; they can evidently

be regarded as constant only along one and the same vector. In order to perform
the differentiations indicated, we must, therefore, write the component forces

in the explicit (variable) form

( r-r\
in n ( t-- 1

V /

/ r-r\
x cos n

[
t I

V v /

x sin n\ t-

with analogous expressions for Q and R, and

n . / r-r\
sin ft I f I

(r-r) V v )

<<^)}
with analogous expressions for /3

and 7.

Replace P, Q, R and a, j8, y by these values in equations (1) and (2), for example,

the first of each, perform the differentiations indicated, and we have

D r 47rn3 4?ra2 D . 4?r
~|

Jv(r-r)
2

d
r

.- . ,- .,~
s( l(
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sin w cosw o

[g3 (x
- x) - c^ (z

-
2)] (z

-
z)
- [^ (y-y)-a^(x- x)](y

-
y)

(r-r)

sinw 3cosw

f
F7i sin w cos w

~|

\

"
JU (r^f

"
(^"r

) J

sinw 3 cos o>

4irn3v A cos w 47r?i
2v D sin w 47rn'y cos w

'
x

~"" + '-
r)

which gives the familiar relation (cf. formulae (12)) between the velocity of pro-

pagation and the medium constants ; and (the first of equations (2) )

, ..
,

COS W Sill W
-f 4?r -{

- r= ^ + r- j;

f sin co fl^^ M 1
^ F sin fa?

"]
c?(r-r)

\(T^f d{ -
)

L *J
d(r-r) L(^- r)

3J d(y-y)

w

n cosa> sin a;
"| d[^2] r/n _ _ r^tcosctf snto

(r^r
+
(r-r)

5Jd(2-s)
+

l d
d"(?- r) L(r-r)"

t

"(r-r)

here [A s]
= as[(x

-
x)

2 + (y
-
y)

2
]
-

(
z - z) [oj (x-x) + a,2 (y

-
y)],

- 2a.2[(x
-

n cos w o sin ct>

+

47T)i
2
r l= x /o ,on

-ir)
- a,<0- /3)] _-_ + -. Q.E.D.
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13. Show that the component amplitude coefficients &
x,

&2, ^3 f formulae

(104)-(106) are given by the expressions

6i
=

i,

62 a2cos At-a3sin/i, I .................................. (A)

where
/j. denotes the angle between the z and z (y and y) axes (cf. Fig. 35).

This is evident from the annexed figure.

*2

FIG. 36.

14. Confirm formulae (104)-(106).

If we denote the component amplitude coefficients of the force acting in the

primary electric wave (101) along the x, y, z, axes by A lt A%, A s and those along
the x, y, z axes by A*, A 2 ,

A s , the following relations will evidently hold

between these components :

A 2=A 2 cos,fj,- (A)

where
/x,

denotes the angle between the coordinate axes z and z or y and y

(cf. formulae (A), Ex. 13).

By Figure 35, we have now the following relations between the direction-cosines

a, /3, 7 and a, |8, 7 :

, y

, - z - y sin u + z cos u.

ana "y == --
r -r

(cf. formulae (A), Ex. 13), or, since here z=0 (cf. p. 213),

-__

= sin cos
/j.

and
.

y = = - sin sin p.

Replace a, j8, 7 in the expressions for the component amplitude coefficients

A l} A 2,
A 3 (cf. formulae (104)) by these values, and we have

^ + (a2 sin cos n - a3 sin sin /x) cos 0.

- (jcos0- a<2 sin cos AI) sin sin/*.
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On replacing the A's by these values in formulae (A), we then find the following

values for the ^4's :

A
! [! sin + (a2cos //,

- a3 sin /*) cos 0] sin 0,

A 2
=

[aj sin + (a2cos /u
-

3 sin /*) cos 0] cos 0,

.4 3 a2 sin ft + a3cos p,

which, by formulae (A), Ex. 13, can be written

(c)

(cf. formulae (104)).

Similarly, on replacing a, ft, 7 by the above values in analogous relations to

(A), which will hold between Blt B.2, B% and Blt B2 , B3 ,
the component amplitude

coefficients of the force acting in the secondary electric wave along the x, y, z

and x, y, z axes respectively, we find (cf. formulae (104) and (105))

B2=B.2cos fji.

- B3 smfjL (2a.2
- 3^4 2 ) cos /j.

- (2a3
- 3.4 3) sin /*,

Bs
= jB2 sin yw + Bs cosfj, (2a2

- 3.4 2 )
sin

JJL + (2a3
- 3A 3 )

cos p,

M'here A lt A 2 ,
A 3 are given by formulae (B), which we can write in the form

Bl
= 2a

1 -3^ 1 ,

B.2= 2(a2cos /J,
- a3 sin /*)

-
3(

jB3
= 2(^2 sin /i + a3 cos /x)

-
3(

or, by formulae (A), Ex. 13, and (A) and (c) above,

B
1
= 2bl

- S^sin + 62cos 0) sin 0,

B.2 262
- 3 (6j sin + &2cos 0) cos 0,

#j = 2&3 -3&3
= -63

(cf. formulae (105)).

Lastly, replace a, /3, 7 by the above values in analogous relations to (A),

which will hold between the component amplitude coefficients C^, (72, C3 along
the x, y, z axes and those Clt C.2, (73 along the x, y, z axes of the force acting

in the magnetic (primary and secondary) \vave, and we find, by formulae (106),

Cl
-

(a2sin ^ + a.,cos /x) sin 0,

C2
= -(a2 sinfj. + a3 cosfj,)cos(p,

C3
= aj sin + (a2cos /x,

- a3 sin JJL) cos 0,

which, by formulae (A), Ex. 13, can be written

Cl
= -63 sin 0,

C2= - 63 cos 0,

<73
= 6

a
sin + 62 cos

(cf. formulae (106)). Q.E.D.



CHAPTER VIII.

PROPAGATION OF ELECTROMAGNETIC WAVES THROUGH
CRYSTALLINE MEDIA. REFLECTION AND DOUBLE
REFRACTION ON THE SURFACE OF BIAXAL AND
UNIAXAL CRYSTALS; TOTAL REFLECTION.

Aeolotropic Media; the Crystals. Isotropic media are thereby
characterized that the constants of electric and magnetic induction

retain one and the same values in all directions, that is, the electric

and magnetic displacements or moments are independent of the

directions of action of the forces, the displacements always being in

the directions of action of the forces themselves (cf. formulae

(3 and 4, I.)).
On the other hand, media, in which the constants of

electric and magnetic induction assume different values according to

the directions chosen, are known as "
aeolotropic

"
(cf. p. 7) ;

such media

will, therefore, evidently be characterized thereby, that the moments

do not, in general, take place in the directions of the forces acting.

The only aeolotropic media, within which light or electromagnetic

phenomena can be investigated to any degree of accuracy, are now

the crystalline ones ;
of these the best suited for investigation are the

transparent crystals, all of which are known as poor conductors. Let

us, therefore, confine our ensuing investigations to the behaviour of

light and electromagnetic waves in aeolotropic insulators.

The Constants of Electric and Magnetic Induction. Experiments
*

have shown that there are, in general, three directions in any aeolo-

tropic insulator or crystal, in which the constant of electric induction

assumes a maximum or minimum, and that these three principal

directions or axes always stand at right angles to one another

*Cf. L. Boltzmann :

"
Experimentaluntersuchung iiber das Verhalten nicht

leitender Korper unter dem Einfluss elektrischer Krafte," Fogg. Annalen, v. 153,

1874.
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(cf. p. 7) ;
forces acting along these axes will, therefore, evidently

give rise to displacements or oscillations along the same. On the other

hand, all attempts to detect any appreciable change in the value of

the constant of magnetic induction with respect to direction have

failed. In the following we may, therefore, assume that the constant

of magnetic induction is independent of the direction chosen.

Maxwell's Equations for Crystalline Media. We choose the

three principal directions or axes, along which the constant of electric

induction becomes a maximum or minimum, as axes of a system of

rectangular coordinates x, y, z and denote the respective values of

that constant D along those axes by Dv D
2,
D

z
. We then make

the plausible assumption that, if there be any change in the value

of the constant of magnetic induction M with respect to direction, the

directions of its maxima and minima coincide with those of the con-

stant of electric induction D. Similarly, we shall denote any such

principal values of M along the x, y, z axes by M} , M^ and M
3

respectively. Maxwell's fundamental equations for the variations of

the component electric and magnetic forces P, Q, R and a, /?, y respec-

tively acting in any aeolotropic insulator or crystal can then evidently

be written

D.dP dp dy
dt dz dy'

dt dx

dt dy

dp
dx

(1)

(cf. formulae (8, I.)) and

M
l
da dR dQ

VQ dt dy dz*

M
2 dp_dP dR
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(cf. formulae (7, I.)) and

Plane-Waves. The electromagnetic state in any crystal is now
denned by the above equations (l)-(4) ;

of the different possible states

only the oscillatory one interests us here. What oscillatory states are

now consistent with these equations, that is, what forms of electro-

magnetic waves can be propagated through the given medium ? It is

now possible to show that the crystalline medium denned by the

equations (l)-(4) is capable of transmitting only linearly polarized

plane-waves, and these, in fact, only under certain restrictions. The

problem before us is, therefore, to determine the manner in which a

plane-wave will travel through a crystalline medium, that is, as we shall

see below, to determine the direction (directions) of oscillation and

the velocity (velocities) of propagation that must prevail in such a

wave, in order that it may travel in any assigned direction through
that medium. We have now seen on p. 11 that plane-wave motion

(<\t -
J,
where t denotes the time,

s the distance of any wave-front from any given point and v the velocity

of propagation. Let us represent any system of plane electric waves

that can be transmitted through the given crystal in the familiar form

(5)

where a denotes their amplitude. We denote the direction-cosines of

the normal to any wave-front of this system of waves at any point

P on the same referred to the principal axes x, y, z of the crystal by

A, /A, v, and those of the direction of oscillation at that point by ,

>?, & as indicated in Fig. 37 below; A, ^, v are to be regarded here

as given, whereas
, rj,

are to be sought. Lastly, let the point, from

which the distance s to the point P is measured, be chosen as origin

of the system of coordinates x, y, z (cf. Fig. 37). The component
moments or oscillations X, 7", Z at any point P on any wave-front

of the waves represented by the function (5) will then evidently be

.(6)

where s=Xx + py + vz (6A)
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By formulae (3) the component electric forces P, Q, R acting at the

point P will evidently be

(7)

FIG. 37.

To determine the component magnetic forces a, /?, y acting at the

point P, we replace P, $, P by these values in formulae (2), and we

have, on performing the differentiations indicated,

and analogous equations for
/:?
and 7. These equations integrated give

4:7TVna/ fJiC VTI
f,

l>
I

' a __ l_ I /,

.(8)

where we have rejected the three constants of integration, which are

functions of x, y, z only, since it is only the periodic or oscillatory

motions that interest us here (cf. p. 29).

By formulae (4) the component magnetic moments or oscillations

, 6, c, to which the component forces a, /3, y give rise, will then be

represented by the expressions
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I

v \D
H)

.(9)

Particular Form of Maxwell's Equations for Plane-Waves.

The expressions (7) and (8) for the component forces P, Q, E and a, /?, y

in(t-
S
-\

respectively can now each be written in the form e
n
\ ' times a given

constant factor, this factor being, of course, different for the different

components. Upon the differentiation of these expressions for the

component forces with regard to the time t and the coordinates x, y, z, as

demanded by our fundamental diiferential equations (1) and (2), the ex-

pressions for the differentia] quotients will, therefore, differ from those for

the component forces themselves by the factors in and
, -,

-

respectively, so that the differential quotients of equations (1) and (2)

may each be replaced there by the quantity or component force itself

multiplied by that respective factor ;
we can, therefore, evidently

replace the above differential equations (1) and (2) here by the following-

ordinary linear ones :

= i/a -Ay, .(10)

and

.(11)

rir.

The validity of the latter equations (11) is also evident from the

above values (7) and (8) for the component forces P, Q, R and a, /3, y

respectively, whereas the confirmation of the former from the above

values involves a knowledge of the relations that hold between the

direction-cosines A, /A, v and
, 17, f, the medium constants, the Z>'s and

M's, and the velocity of the propagation v of the waves (cf. Ex. 1 at

end of chapter).
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Electric and Magnetic Oscillations in Wave-Front. Multiply

equations (10), the first by A, the second by /x and the third by r,

add, and we have

equations (11), similarly treated, give

\M,a. + pMzP + vM3y = 0.

By formulae (3) and (4) these two relations can now be written

\X+pY+vZ=0 ...........................(12)

and \a + id) + vc = Q............................ (13)

These relations, interpreted geometrically, state that both the electric

and the magnetic oscillations take place at right angles to the normal

(A, /z, i/)
to the given wave-front

;
that is, they both lie in the wave-

front itself.

Electric Moment at JL to Magnetic Force and Magnetic Moment
at _L to Electric Force. Next, multiply equations (10), the first by a,

the second by /3 and the third by y, add, and we have

D
l
Pa + D2Q/3 + DsRy = Q; ........................ (14)

equations (11), similarly treated, give

M
l
Pa + M,Q/3 +M3Ey = Q......................... (15)

Observe that for M
1
=M

2
= M% this last relation becomes

Pa+Qp + Xy = 0; ........................... (15A>

that is, the electric and the magnetic forces then act at right angles

to each other.

By formulae (3) and (4) the relations (14) and (15) can also be

written

Xa + Y/3 + Zy = Q ............................. (16)

and aP + bQ + cfi = Q; ........................... (17)

that is, both the electric moments and the magnetic forces and the

magnetic moments and the electric forces act at right angles to one

another.

Electric and Magnetic Oscillations at_Lfor M
l
=M

2
=My By

formulae (3) and (4) the relations (16) and (17) can also be written

.

which evidently give

l M (
1 1

^D,

"
M&)

:

(M.D, WJ
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Although it would follow from these relations that the electric and

the magnetic oscillations do not take place at right angles to each

other, we observe that this most general case, where D
1 ^D2 ^ D3

and M^M^My is only a theoretical one that is perhaps never

realized (cf. above) ;
until experiment has refuted the assumption that

M
l
M

<1

= M^ we are, therefore, surely justified in writing the rela-

tion (18) in the form
Xa+Yb + Zc = (), ........................... (20)

and in thus maintaining that the electric and the magnetic oscillations

always take place at right angles to each other.

The Particular Case D
1^D2

= D
S
and M^M^M^ Before we

consider the most general empirical case, where D
l^D2^D3

and

M
l
= M

2
=M

3 ,
let us examine the simpler theoretical one, where

D^D2
= D

3
and M

l^M2
=M3,

the most general form for the medium-

constants in so-called
" uniaxal

"
crystals (cf. p. 344) ;

this particular

case is not included in the most general empirical one, whereas it

cannot be deduced from the most general theoretical case, where

.Dj <;D2 < Z>
3
and 71^ <iM2 < 7I/

3 ,
since the latter is too complicated

to admit of an explicit solution (cf. p. 341). Moreover, the brief

examination of this particular case will throw light on the more

complicated treatment of the most general empirical one.

For D
l ^Dz = D

3
= D and M^^M2

=M
3
=M the relations (18) and

(19) can be written in the form

and

which give (D^ - DM^Xa =
and (DMl

- D^M) (Yb + Zc) =

hence, since, in general, (D-^M
- DM

, ) ^ 0,

=

and

or Xa = 0\ (21)
and Xa + Yb + Zc = J

These relations, interpreted geometrically, state that the electric and

the magnetic oscillations take place at right angles to each other and

either the former or the latter in planes parallel to the ^-plane. Let

us now examine these two possible cases.

Case 1 : The Magnetic Oscillations Parallel to ^-Plane. Here the

direction of oscillation of the magnetic oscillations at any point P

(cf. Fig. 37) will evidently be uniquely determined by the intersection

of the given wave-front (cf. formula (13)) and the plane parallel to the
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f/3-plane passing through that point. The accompanying electric

oscillations will evidently take place in the given wave-front (cf.

formula (12)) at right angles to the magnetic oscillations (cf. formulae

Here a = 0, and formulae (10) and (11) thus assume the particular

form

(22)

v
o

'

v
o

and = vQ /u7?, 1

M
p = xl,_>vp

M .J (23)

The first two equations (23) give

and this and the last equation :

Replace ft by this value in formulae (22), and we have

Lastly, replace P, Q, R by these values in formulae (23) : the

first equation then leads to an identity, whereas the other two both

give one and the same conditional equation between the medium-con-

stants, the direction-cosines X, yu,,
v of the normal to the given wave-front

and the velocity of propagation v of the waves, namely

V~^ A
'

Since now A2 +^ + v2 = 1
,

we can write this equation in the form

that is, the velocity of propagation squared of the given waves, both

electric and magnetic, will, on the assumption of the validity of

Maxwell's equations (1) and (2), be given by this expression (24),

which is a function of A, D, D
t
and M (cf. also Ex. 2 at end of

chapter).
Y
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It thus follows that the given crystalline medium is capable of

transmitting electromagnetic plane-waves in any assigned direction

(A, //,, v), provided, on the one hand, the magnetic oscillations take place

at right angles to that direction and to the 2-axis and the electric ones

at right angles to that same direction and to the magnetic oscillations,

whereby the directions of oscillation of both will be uniquely deter-

mined, and provided, on the other hand, both oscillations are propagated

(in the assigned direction) with the velocity determined by formula (24).

Case 2 : The Electric Oscillations Parallel to ^-Plane. Here the

direction of oscillation of the electric oscillations at any point will

evidently be uniquely determined by the intersection of the wave-

front and the plane parallel to the yz plane passing through that

point, whereas the accompanying magnetic oscillations will take place

in that wave-front at right angles to the electric oscillations. The

further treatment of this case is similar to that of the preceding one.

In place of formulae (22) and (23) we evidently have

1 a = ^-/x/?, I

*'

M Q N TJ vM . n
/3
= A#, y=-XQ. JV V

Q

The elimination of a, (3, y from equations (25) gives

and

vM

On replacing Q by this value in formulae (26), we have

vM, /x'
2 + v-

a = ------

w w ' aV V
Q A*

Lastly, ,the substitution of these values for a, /3, 7 in formulae (25)

leads to an identity and to the following conditional equation between

the medium-constants, the direction-cosines X, //,
v and the velocity of

propagation v :

+ (27)~D\M* M
l )'

that is, the velocity of propagation squared of the given electric and

magnetic waves will be given by this expression (27), which is a

function of A, D, M and M-^ (cf. also Ex. 3 at end of chapter).
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It thus follows that the given crystalline medium is also capable of

transmitting electromagnetic plane-waves in any assigned direction

(A, JJL, i/), provided, on the one hand, the electric oscillations take place

at right angles to that direction and to the z-axis and the magnetic
ones at right angles to that same direction and to the electric

oscillations, whereby their directions of oscillation will be uniquely

determined, and provided, on the other hand, both oscillations are

propagated with the velocity determined by formula (27).

Given Medium Capable of Transmitting Two Systems of Plane-

Waves with Different Velocities of Propagation. It follows from

the above that the given medium is capable of transmitting electro-

magnetic plane-waves of two different directions of oscillation, as

determined above, in any assigned direction, whereby the velocity

of propagation will differ for those two directions of oscillation, being
determined by formula (24), when the magnetic oscillations are taking

place in planes parallel to the y^-plane, and by formula (27), when

the electric oscillations are in those planes. We observe that for

M
l
=M

2
= M% the expressions (24) and (27) for the velocities of

propagation of the two possible systems of plane-waves that may be

transmitted through the given medium in any assigned direction are

the square roots of the quadratic equation (37) in v'
2 for biaxal

crystals (cf. p. 343) modified accordingly for.uniaxal crystals.

For M
l
=M formula (24) remains unaltered, whereas formula (27)

reduces to ,
2

It thus follows that for M
l
=M (uniaxal crystals in current sense)

the velocity of propagation of the electromagnetic waves of Case 2,

where the electric oscillations are taking place in planes parallel to the

?/.3-plane, will be entirely independent of their direction of propagation

(A, fa v) ;
we observe that their velocity of propagation is then that

of electromagnetic waves in a similarly constituted isotropic medium

(insulator) (D^
= D., - D.

A
=

D).

For l)
l
= D formula (24) reduces to

~
DM'

whereas formula (27) remains unaltered. Here the velocity of propa-

gation of the electromagnetic waves of Case 1, where the magnetic
oscillations are taking place in planes parallel to the ^-plane, would also

be entirely independent of their direction of propagation ; that is, the

given waves could be propagated in all directions through the medium
with one and the same velocity, that of electromagnetic waves in a
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similarly constituted isotropic medium. We observe that of the two

possible cases (media), M^ = M, D^D and D
1
= D, Ml ^ M, the latter

is probably never realized.

Most General Case : D
x^ D

2^ D3
. Let us now consider the most

general case, where

D^D^Ds and M^M^M9

examining thereby the conditions, under which electromagnetic linearly

polarized plane-waves may be transmitted in any assigned direction

(A, //,, v) through the crystalline medium defined by these values of

D and M. For this purpose we shall eliminate first the magnetic and

then the electric forces from our fundamental equations (1) and (2)

respectively, and examine the electric and the magnetic oscillations

separately. The elimination of a, /?, y from equations (1) and that of

P, Q, R from equations (2) evidently give

v dP M
2 dz\dz dx) M

B dy\dx

and similar equations in Q and R, and

M
l
d2a v

(}
d /da d/3\ v d /dy <

^W =
B̂ ^j\dy~'dx)~ir2 ~dz\dx~dz /

and similar equations in ft and y respectively.

Replace here the forces P, Q, R and a, ft, y by their respective

moments X, Y, Z and a, b, c, and we have

1 d2X 1 d / 1 dX 1 dZ\ 1 d / 1 dY I dX
V
L d2Y- JL / * ^?_ _1^ _ JL ^fJL ^_ 1_ ^F

and

o dx\D2
dx D^ dy ) M

1 dz\DB dy D
2
dz

J_^= JL ^ (_L^ _ _L^ _ _L L fJL ^? _ JL^
v 2 ^2 7kf

2 dy\DB dy DC, dz ) M
2 dx\D^ dz D

B dx)

1 d2a _l_ d_f
1 ^a_ 1 rf6\ 1 d / I dc 1 da'

(28)

j ^ 7I^
2 dx) D<> dz \M 3

dx M
l dz,

J^ ^_J^^/J_^_ J_Jc\_J_ ^/J_^_ J_^, ,

_d%_]d/l(k_lda\ I
d_/

I db }
dc_

v
Q
2 dP

~
D

2
dx \MB

dx M
l dz) D

l dy\M2
dz M

B dy

The Electric Oscillations. In order that electromagnetic linearly

polarized plane-waves may be transmitted through the given medium,

the above expressions (6) and (9) for the moments X, Y, Z and a, b, c

respectively must evidently satisfy the differential equations (28) and
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(29). Let us first examine the electric oscillations
;
we replace X, F, Z

by their values (6) in formulae (28), and we find the following con-

ditional equations between the direction-cosines A, /z, v, which are'given,

and those f , >;,
and the velocity of propagation v, which are sought :

T))~WZ\D.~^

f
I

M, \Da DJ

\ !>*<

(cf. also formulae (B), Ex. 1, at end of chap.), which forM
l
= M.

2
= M

z
=M

reduce to

(30)

= (72 (A3 + /^) f
-

f;r;.^ C2 = ............... (30A)

By the geometrical relation

these conditional equations (30) can be written in the form

where f=A*hg + B2
fji.r)

+ C2
v{. ........................ (31 A)

We observe that for M
l M^M^ the conditional equations cannot

be brought into this simple form (31) (cf. p. 336).

Let us now introduce into the above formulae that direction (of

oscillation), which is at right angles both to the normal (A, //, v) to the

given wave-front and to the direction of oscillation (J, ?/, f) sought ;

if we denote its direction cosines by ', rf, f ,
the following geometrical

relations will then evidently hold between these direction-cosines- and

those A, fj.,
v and f, r/, f :

r~"?-/4 tf-Af-i* <r=/^-^; ............... (32)

these relations are now not independent of one another, but are

evidently connected by the three familiar geometrical relations

if-<U
0, ........................... (33)

Multiplying now the above conditional equations (31), the first by
the second by rf and the third by ', add, and we have

^(ff + w' + ff) = (Af
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or, by formulae (33),

/ + 2
ff'
= ........................ (34)

Next, multiply the conditional equations (31), the first by ,
the

second by rj
and the third by f, add, and we have

A*? + V + 22 _ V2(2 + ^ + f2)
.

(

or, by formulae (33) and since 2 + if 4-
2'=

1,

an equation for the determination of the velocity of propagation v as

function of A, B, C and f, r;,
.

Lastly, write the conditional equations (31) in the form

A ,. fl f . V f
C\<n\

multiply these, the first by A, the second by /x and the third by v, add,

and we have

or, by formulae (33),
A2

i$^
~~A'i) 9 ~^~ ~LM To

a quadratic equation for the determination of v2 as function of the

medium constants A, J3, C (cf. formulae (30A)) and the direction-cosines

A, /x, v.

Two Directions of Oscillation with Different Velocities of Propa-

gation ;
Determination of these Singular Directions and Velocities of

Propagation. The conditional equations (31) and hence the fundamental

differential equations (1) and (2) will evidently be satisfied, when the

above formulae (34)-(37) hold
;

these formulae will, therefore, serve,

provided they can be satisfied, for the determination of the quantities

sought, the possible directions of oscillation and the respective velocities

of propagation in any assigned direction. It follows now from formula

(37) that there will be two and only two possible velocities of

propagation for waves transmitted through the given medium in

any assigned direction (A, /u, v), and hence from formulae (36) that

there will be two and only two possible directions of oscillation for

waves propagated in that direction
;
on the other hand, it is evident

from formula (34) that these two directions of oscillation are those

whose direction-cosines are
, >?,

and
, ?/, f ',

that is, the two possible

directions of oscillation will be at right angles to each other and both

at right angles to the normal (A, //, v) to the given wave-front (cf. also

pp. 335 and 336). These two possible directions of oscillation in any
wave-front are now known as the "

singular directions." By formula

(34) the two singular directions (, 7;, f) and (', i/, ') sought are now
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defined as the directions of conjugate diameters
;
on the other hand,

since they are at right angles to each other (cf. formulae (33)), they
will evidently be determined as the principal axes of the ellipse formed

by the intersection of the plane

Asc + fiy + K3 = 0, (38)
and the ellipsoid

A*x* +&f+CW~l (39)

Lastly, it then follows from formula (35) that the velocity of propa-

gation v of the oscillations parallel to either principal axis of this

ellipse will be determined by the reciprocal value of that principal axis.

Fresnel's Construction. It is evident from the above that electric

plane-waves of two and only two directions of oscillation but with diffe-

rent velocities of propagation can be transmitted through a crystalline

medium in any assigned direction
;

these two possible directions of

oscillation or singular directions are determined by the principal axes

of the ellipse formed by the intersection of the plane (38) parallel to

the given wave-fronts and the ellipsoid (39), whereas the velocity of

propagation of the oscillations parallel to either principal axis is

determined by the reciprocal value of that axis. This method of deter-

mination of the singular directions and the corresponding velocities

of propagation is known as "Fresnel's construction." It is evident

that not only the singular directions but also the respective velocities of

propagation will vary according to the direction of propagation chosen.

The Optical Axes : Biaxal and Uniaxal Crystals ;
the Ordinary and

Extraordinary Oscillations. It follows from Fresnel's construction for

the determination of the two singular directions of oscillation and the

respective velocities of propagation that there are, in general, two direc-

tions of propagation (A, //, v) in a crystalline medium, each of which will

give one and the same velocity of propagation for both singular direc-

tions ;
these two directions of propagation are now evidently determined

by the normals to the two planes (38) that intersect the ellipsoid (39)

in circles As the circle has no principal axes, it will follow that the

oscillations in these two particular wave -fronts may take place in any
direction. The two directions of propagation thus characterized are

now designated as the "optical axes" of the medium; crystals posses-

sing two such optical axes are, therefore, termed "biaxal crystals.

For A-=B, A = C or B=C the ellipsoid (39) will degenerate to one

of revolution, and the two planes (38) that intersect it in circles

Avill evidently coincide with each other. In such crystals there

will, therefore, be only one direction, in which both (all) oscillations

will be propagated with one and the same velocity, whereby, as

above, the oscillations themselves may take place in any direction
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at right angles to that direction
;
this direction of propagation evidently

coincides with the axis of revolution of the given ellipsoid of revolution,

which for B= C is its z-axis. Crystals possessing only one such optical

axis are, therefore, known as " uniaxal
"
crystals. It follows now from

Fresnel's construction, modified for uniaxal crystals (A>B=C),* that

the sbe^ter- axes of the ellipses, formed by the intersections of the

planes (38) and the ellipsoid (39), will have one and the same length
for all directions of propagation (X, //,, r), and hence that the oscillations

that take place parallel to those axes will all be propagated with one

and the same velocity (cf. also below) ;
as this common velocity of

propagation is now that of plane-waves transmitted through a similarly

constituted isotropic medium, the oscillations propagated with that

common velocity are, therefore, designated as the "
ordinary

"
oscilla-

tions JVw&ves- The other oscillations, or those that take place parallel

to theTeeger axes of the ellipses, will be propagated with velocities that

are proportional to the lengths of those axesjcf. above) ; since now, by
Fresnel's construction, the length of the leeger axis of any such ellipse

evidently varies with the direction of propagation chosen, these oscilla-

tions will be propagated with different velocities, and they are thus

known as the "
extraordinary

"
oscillations or waves.

Actual Determination of the Velocities of Propagation of the

Ordinary and Extraordinary Waves. To determine analytically the

velocities of propagation of the two possible systems of plane-waves
that may be transmitted in any assigned direction through a biaxal

crystal, we must solve the above quadratic equation (37) in v-
;

multiplying it out, we have

, . , .

which gives

Suppose now that A 2 >1?2>C 2 we can evidently always choose our

system of coordinates so that this be the case
;
the expression under

the square-root sign will then be positive and hence its square-root

always real, and the given quadratic equation will have two real

roots. Before we consider further these two roots for biaxal crystals,

let us examine the particular form assumed by formula (40) in uniaxal

crystals. Take 2 = C 2
,
that is, the z-axis as optical axis; the ex-

pression for v2 will then reduce to

- (A* - 6'
2
)/*

2 -
(A*

- &)v*J . (40)

* We are assuming here, as below, that
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or, by the geometrical relation A2 + f*
2
4- v2 = 1, to

which gives the two simple values for v2

v
i

2 = C2 \ (40A)-. o jo / jin S^if)\ \O I
. \ T^V/XV *

and v
2
2 =A 2 -(A 2 - C 2

)
A2

. )

The former of these values is evidently the velocity of propagation

squared of the ordinary waves (cf above) ;
it corresponds to that

root of the quadratic equation in v2
,
where the positive sign has been

chosen before the square-root sign in the general expression (40) for v-
',

similarly it is easy to show that for A 2 = B2 the positive sign must be

chosen before the square-root sign, in order that we may obtain the

velocity of propagation of the ordinary waves. If we use this as

criterion in discriminating between the two possible systems of waves,

the ordinary and extraordinary (refracted) ones, in biaxal crystals

(A>B>C), the velocity of propagation squared of the former would

be given by the expression

- (7V2 -

- C2
)(B

2 - C2
) A'-y }

and that of the latter by

v* = | { (B
2 + (7

2
)
\2 + (A

2 + C2
) f*

2 + (A
2 + B2

)
v2

- C'
2
)
A2 - (A

2 - G'
2
)/*

2 (A 2 -
B*)v

2
]

2
...(42)

J

^e

+ 4(A
2 - C2

)(B
2 - C2

) A^2
}.

Determination of Position of the Optical Axes. We have already

observed that in biaxal crystals there are two directions (A, /x, v),

known as the optical axes of the crystal, along either of which both

(all) systems of waves, the ordinary and extraordinary ones, are propa-

gated with one and the same velocity ;
this is, here

tf-*^
which by formulae (41) and (42) can be written

where A, B, C are to be regarded as given and A, /*,
v are sought.

Since now, by assumption, A 2>B2>C 2
,
both terms of the left-hand

member of this conditional equation will be positive ;
the given

quation can, therefore, evidently be satisfied only when

(B
2 - C2

)
A2 -

(A
2 - O>2 - (A2 - B2

)
v2 =

and 4 (A
2 - C2

) (B
2 - C 2

) A->
2 = 0.
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That these two conditional equations may be satisfied, we must now

evidently put either

A
i
a = and (^-(7>1

2-(^->1

2 =

or /*2
2 = and (& 7 0*)\f.^(A*-&)vto

Together with the geometrical relation A2 + //.

2
-f- v

2 =
1, these con-

ditional equations between the direction-cosines A, //,
v sought and the

medium constants A, B, C would evidently give the following values

for the former :

rj
~~

Jf2 __ Q'2
' 1

~~

Jf2 _ (72

A*-B* B* - C*
A2 A^C* ^ =

0j K
"2rrB*

Since now, by assumption, A'2 >fi'2 >C'2
, p-f would be negative and

hence /^ itself imaginary. The former values A p /xp i/
x

for the

direction-cosines A, /A,
v would, therefore, have no physical meaning

and must thus be rejected ;
the latter values are, therefore, the ones

sought ;
we can write them in the form

where we have dropped the index 2. These values correspond to

four directions (A, /*, v) of normal, two of which are evidently

oppositely directed to the other two
; they are now familiar to us as

the expressions that determine the directions of the normals to the

two circular cross-sections of the ellipsoid (-^9). Of the four directions

determined by these values for A, /x,
r it is customary to choose

as optical axes two that make an acute angle with one another; let

two such directions be

f
2^2

ff
-l~ l (43A)

and

Observe that in uniaxal crystals (A>B= C) these values reduce to

A=l, pW-0,
the (positive) x-axis (cf. p. 344).

Velocity of Propagation along the Optical Axes. Let us, next,

determine the velocity of propagation of waves transmitted along

either optical axis. We have just seen that this velocity is

characterized by the vanishing of the square-root expression in the

general formula (40) for v2
;
the velocity sought will thus be given by

the expression

C*) A
2 + (A

2 + C2
} ,J + (A

2 + &) V2
].
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If we choose as optical axes the two determined by formulae (43A),

we find, on replacing here A, p, v by those values,

tf-V-JP; (44)

that is, all (both) waves will be propagated along both optical axes

with one and the same velocity.

The Angles between Optical Axes and Normal to Wave-Front

as Variables. It is often convenient to refer our formulae to the

optical axes instead of to the coordinate axes x, y, z employed above

(cf. p. 331). For this purpose we introduce the angles w
x
and u

2 ,
which

the normal (A, /x, v) to the given wave-fronts makes with the optical

axes. These angles are now evidently determined by the following

expressions in terms of the direction-cosines A
I} /tj,

v
l
and A

2 , /*.,,
v
2
of

the optical axes and those A, //, v of the normal to wave-front :

cos u^ AAj -I- /x/Xj + vi/j

and cos u
2
= AA

2 -f /x/x2 -f w^

or, since by formulae (43) ^ =^ = here (A>B>C),

cos u^
= AAJ + i/i/j

and cos u
2
= AA

2 + vvy

If we choose as optical axes the two determined by formulae (43A),

we find, on replacing here A
x , \\ and X,, v.

2 by those values,

'B'2 -C'2
cos

, lA*-ti* I#*-V*.
and cos ,,

= A

'2 - C'2 cos u, + cos u ^

which give
- -* 2

IA2 - V*
~
V w - C*

- C- cosw, - cosw. .(45)

hence
/x
= v/i - A2 - v2

,

that is, A, /x,
v expressed in terms of the angles u^ and u

2
and the

medium-constants (cf. formulae (30A)).

Velocity of Propagation expressed in Terms of % and ?/ 2. To

express the velocity of propagation (cf. formula (40)) in terms of the

new variables u^ and u
2,
we must determine the two expressions

(1>- + C'2
)
A2 + (A'

2 + G'-)/x
2 + (A'

2 + B2
)v

2

and [(JS
2 - C 2

)
A2 - (A

2 - C'
2
)/x

2 - (A* - B*) ^2
]
2 + 4 (^

2 - C'
2
)(#

2 - (7
2
)
A2

/x
2

as functions of those variables. For this purpose we replace A, /x,
v by
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their values (45) in terms of ^ and u
2
in these expressions, and we have

2 -(A 2 -C 2
)(p

2 -q2
)

and

[(B
2 - C2

)X
2 - (A

2 - (7V2 - (^ -#>2
]
2 + 4(/4

2 - C2
)(B

2 - C 2

OS !, COS U.} COS W, - C
where ^>

= -^ - and q
= JL

9

or, on replacing p and ^ by their values,

and [(^
2 - (7

2
)
A2 - (A

2 - C 2)^ - (A
2 - B'2

)
v2

]
2 + 4 (^

2 - <7
2
)(

2 -

= (A*
- (7

2
)

2
[cos

2w
1
cos2w

2
- (cosX 4- cos2w

2 ) + 1]

Replace the given expressions by these in formula (40) for v2
,
and

we have A* + C'2 A* - C s

v2 =
^ ^

cos(w 1 ^), ................. (46)

that is, the velocity of propagation expressed in terms of the angles u^

and w 9 ,
which the optical axes make with the normal to the given

wave-fronts.

Expressed in terms of w
x
and u

2
the velocities of propagation of the

ordinary and the extraordinary waves would, therefore, evidently be

given by

A 2 -C 2
, X TJ

o 9
cos

(
u

i
+ Ma)

.............. (46A)
^ 2 + (7

2 ^ 2 -C 2
. .

and ve
2 =--

^
----

^ cos (u^
- u.

2 ) j

respectively (cf. p. 345).
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The Magnetic Oscillations. A similar treatment of the magnetic
moments of formulae (29) shows that a crystalline medium is also

capable of transmitting in any assigned direction (A, /z, v) two systems
of magnetic waves, whose directions of oscillation are at right angles

to the electric oscillations that can be transmitted in that direction

and whose velocities of propagation are those of the respective electric

waves (cf. Ex.'s 7 and 8 at end of chapter).

The Ray. The rather abstract conception "ray" plays such an

important part in the theory of light, that we should hardly feel

justified in making no mention of it here
;

it is often introduced,

because certain formulae, as those of reflection and refraction on the

surface of a crystalline medium, assume simpler form, when referred to

the "ray" than to the normal to wave-front (cf. pp. 366-367). We
can now define the "ray" as the direction determined by the normal

(taken in the direction of propagation of the wave) to the plane
that passes through the direction of action of the resultant electric

force P, Q, R and that of the resultant magnetic force a, j3, y or, if we
assume thatM

\
=M

2
=M

B,
that of the resultant magnetic moment a, b, c.

Relative Position of Ray to Forces and Moments. By formulae (12)

and (13) both the electric and the magnetic oscillations X, Y, Z and a, b, c

respectively at any point (cf. Fig. 37) take place at right angles to

the normal A, ^ v to the wave-front at that point, whereas, by formula

(16), the resultant electric moment X, Y, Z and the resultant magnetic
force a, /3, y make a right angle with each other, as roughly indicated

in the annexed figure. If we assume that M
1
=M

Z
=M

s ,
the resultant

PQR

XYZ

'abc
FIG. 38.

magnetic moment a, b, c will then be in the direction of action of the

resultant magnetic force a, ft, y, that is, the latter will also lie in the

given wave-front at right angles to the resultant electric moment. By
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formula (17) the resultant electric force P, Q, R acts at right angles
to the resultant magnetic moment a, b, c or. if M

1
=M

2
= M.

3 ,
to the

resultant magnetic force a, /?, y ;
since now the latter (, b, c) then

(Ml
=M

2
=M

3 ) makes a right angle with the resultant electric moment

X, Y, Z, it follows that the resultant electric force P, Q, R will lie

in the plane that passes through the resultant electric moment X, Y, Z
and the normal A, /x,

v to the given wave-front ; let us denote the

angle, which the resultant electric force P, Q, E makes with the

resultant electric moment X, Y, Z, by e. By our above definition

the ray is now determined by the normal to the plane that passes

through the direction of action of the resultant electric force P, Q, E
and that of the resultant magnetic force a, /3, y or moment a, b, c

(Ml
=M

2
=M

3 ); since now the resultant electric force P, Q, E lies in

the plane that passes through the resultant electric moment X. Y, Z
and the normal A, /x,

v to the given wave-front, making the angle e

with the former (direction), and the resultant magnetic force or

moment is normal to this plane, the ray will lie in that same plane,

making the same angle e with the normal A, /x,
v to the given wave-

front. The ray evidently stands in the same relation to the electric

force as the normal to the wave-front to the electric moment.

Determination of the Angle e between Eay and Normal to Wave-

Front. Let us now determine the angle e between the ray and the

normal (A, /x, v) to wave-front, which, as we have seen above, is identical

to the angle, which the resultant electric force P, Q, E makes with the

resultant electric moment X, Y, Z. If we denote the direction-cosines

of the resultant electric force referred to the principal axes of the

crystalline medium by p, q, r, we evidently have

fV Q R

Replace here the component forces P, Q, E by their values (7) for

the plane-waves (6) that can be transmitted in the assigned direction

(A, n, v) through the given medium, and we find, by formulae (30A),

(47)

that is, p, q, r expressed in terms of
, ??, & the direction-cosines of

one of the two possible (singular) directions of oscillation in the given

wave-fronts, and the medium constants A> B, C. These relations

between p, q, r, , 77,
and A, B, evidently give
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The left-hand member of this equation is now the analytic expression
for the cosine of the angle between the two directions P, Q, R and

A", Yy Z, that is, the above angle e
;
we thus have*h*

COS e

or, by formula (35),

cose--. ...(48)

If we denote the velocity of propagation of the ray by vr ,
we can

evidently express cos e in the form and thus write

hence

Derivation of Formulae for Eay. To obtain formulae, where the

quantities are referred to the ray (/, m, n) instead of to the normal

(A, fj., v) to wave-front, we must replace , ry,
in the formulae already

found by their values from formulae (47) in terms of p, q.,
r and the

medium constants, whereas in those formulae, where v appears, we

must introduce the velocity of propagation vr of the ray in its

place.

Replace, first, , v/, by their values from formulae (47) in formula

(35), and we have

* =
(5 + +

S) (A^ +^ + ''^2)>

which by formula (48A) can be written

(49)

an equation for the determination of vr in terms of p, q, r and A, B, C.

Next, replace f, r;, ^ by their values (47) in the geometrical relation

(cf. formulae (33)) and in formulae (34), and we have

^V^-' + ^' = I

jp+jp+C* \ ........................... (50)

and pg + qrf + r{'
=

-)

the latter states that the resultant electric force acts at right angles to

the resultant magnetic moment or force
(
M

j
=M M

3 ).
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It follows now from formulae (49) and (50) and considerations

similar to those on pp. 342-343, that the two (singular) directions

p, q, r and g ?/, f
'

of action of the electric force for any assigned direc-

tion
(/, ra, n) of ray will be determined by the principal axes of the

ellipse intersected on the plane
h + my + nz = Q .............................. (51)

by the ellipsoid

whereas the velocity of propagation of the respective ray vr will be

given by the length of one of the principal axes of that ellipse (cf.

below).

Determination of (Singular) Directions of Force for any given Ray

(/, m, n) ;
Fresnel's Construction. We observe that the ellipsoid (52),

like that (39) employed for the determination of the two singular

directions of (electric) oscillation, is determined alone by the values of

the medium-constants A, B, C
;

its principal axes evidently coincide in

direction with those of the ellipsoid (39), whereas the lengths of these

axes are the reciprocals of those of the latter ellipsoid (39) ;
these two

ellipsoids are, therefore, known as "
reciprocal

"
ellipsoids. The deter-

mination of the two possible directions of action of the electric force in

any crystalline medium corresponding to any given ray (I, m, n) is

evidently similar to that of the two singular directions of (electric)

oscillation in any given wave-front
(A,, p, v) and is effected by Fresnel's

construction (cf. p. 343) : we lay namely the plane (51), to which the

given ray is normal, through the centre of the ellipsoid (52) and seek

the two principal axes of the ellipse intersected on that plane by that

ellipsoid ;
these principal axes then give the two possible directions of

action of the electric force for the given ray (/, m, n), whereas the

velocity of propagation of the ray corresponding to the direction of

action of the force along either principal axis is determined by the

length of that axis.

Equation between Velocity of Propagation of Ray, its Direction-

Cosines and the Medium Constants. The derivation of the quadratic

equation for the determination of vr
2 in terms of the direction-cosines

/, m, n of the ray and the medium-constants A, B, C corresponding

to formula (37), where v2 is determined as a function of A, //,
v

and A, B, C, offers certain .difficulties, for it involves several purely

analytical transformations.

We start from formulae (31) and (3lA) ; by formulae (47) we can

now write the latter in the form

/= A*X + &p,rj + 2
i/f
= (Xp +M + vr)JA^ + B
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or, by figure 38 and formula (48A),

y=cos(90 -
e)vvr

= vvr si

or, since e = arccos
,

f=v*Jvf-v
2

(53)

Replace /by this value in formulae (31), and we have

Since now the ray (I, m, n), the direction of action of the resultant

electric force (p, q, r) and the resultant magnetic moment (', ?/, f)

all make right angles with one another, the following analytic relations

will hold between their direction-cosines :

/ = n/-2f, m=X' -'*', n = qg-pri'

(cf. also formulae (32)). Replace here p, q, r by their values from

formulae (47), and we have

and similar expressions for m and n, hence, by formula (48A),

and similarly vvrm =

and vvrn =

Next, replace here
', i/> f by their values (32) in terms of A, ^ v

and
, 17, ^,

and we can write these relations in the form

or, by formulae (35) and (53) (cf. formula (3lA)),

vvrl = X.v2 - fvijvf v2
,

hence vrl = \v~ fs/^?
- v2

and similarly z?rm = fw rfjv? v2

and vrn = w; f\/rr
2 - ^2

,

that is, A, fj.,
v expressed in terms of /, m, n, f, 7/, f and the y's.

Replace now A, /A,
v by their values from these last relations in the

above form of formulae (31), and we have

(A'
2 - V2

) f
=vy7^( vrl

-

hence (A* - v*)g = vrljvj~^v*

and similarly (B
2 - vr

2
)r)
= vrm-Jv* - v'

2

and (C"
2 -

v;
2
) f
= vrnji>;

2 - v 2

z
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or

* lvr*jv
2 - v2 mvr>Jv

2 -v2
.. nvr Jv

2 - v2

** ^i. f i
*]=

'~^B2 ^v 2~~' 't=~c*^*~'
that is, , 17, ( expressed in terms of /, m t n, the v'a and the medium

constants.

Replace ^, 17, f by these values in formulae (47) for
/?, g, r, and we

have

B2 mvr*Jvr
2 - v2

q =

C2

C 2 -v 2

Lastly, multiply these equations, the first by I, the second by m and

the third by n, add, and we have

A 2
l
2 BW C 2n2

or, since lp + mq + nr = Q (cf. pp. 349-350),

AW B2m2 C 2n2^ +B^ +
C 2 -v

the quadratic equation in v 2
sought ; by this equation we can deter-

mine the two possible velocities of propagation of ray for any assigned

direction (/, m, n) of the same.

Reciprocal Relations between Ray and Normal to Wave-Front.

A comparison of the above equations (49)-(54) between the forces

and the ray with the foregoing ones between the moments and the

normal to wave-front reveals a certain reciprocal relation between

these two sets of quantities. It is evident that to obtain any
formula between the forces and the ray, we have only to make the

following substitutions in the respective formula between the moments

and the normal to wave-front :

V", M,

Imn, pgr, f,'f,
-; jryyt

Reflection and Refraction. The manifold electromagnetic pheno-

mena exhibited by crystals are to be ascribed indirectly almost

exclusively to the peculiar behaviour of electromagnetic waves upon

reflection and refraction on their surface. We shall, therefore, confine

our further treatment of electromagnetic waves in crystalline media
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to the examination of the laws of reflection and refraction on the

surface of crystals and their subsequent behaviour, that of the reflected

and refracted waves, within the same. We shall examine here as

above only the non-conducting crystalline media (cf. p. 330). We
choose the dividing-surface between any two such media, for example,
the cleavage surfaces of two crystals pressed closely together or the

cleavage surface of a crystal placed in an isotropic medium (air),

as ?/2-plane of a system of rectangular coordinates x, y, z with

origin at that point on the same, where the given electromagnetic
waves are incident. The principal axes (Dv D

2)
D

3 )
of either

medium will not, in general, coincide with these axes
; henceforth

let us, therefore, denote the former axes by x', y', z'
(a^', y^, z^)

and retain x, y, z for the latter.

Maxwell's Equations for Aeolotropic Insulators. The electro-

magnetic state in an aeolotropic insulator or crystal referred to any

system of rectangular coordinates x, y, z is now defined by the

differential equations

47r^Z_^_^y &rdY_dy_da ^
vn dt dz dif vn dt dx dz\

/KK\
4*rdZ= da_dp I

'

V
Q

dt dy dx J

7rda_dE_dQ 47rdb_dP_dR\
Vr. dt~ d)/ dz' vn dt~ dz

~
dx

1

/ """
G. \

*clc_dQ_dP^
v
Q

dt dx dy j

(cf. formulae (1 and 2, I.)), where, however, the electric moments are

given by the expressions

.(57)

(cf. formulae (9, I.)); these D's are functions of Dv Z>
2,

>

3,
the

constants of electric induction along the principal axes x', y', z' of the

crystal (cf. p. 331), and the cosines of the angles between these axes

and the coordinate-axes x, y, z
;
Du and D

12 are, for example, given by
the expressions

', z),

\ x)cos(y
f

, x) + D.2co$(x, y) cos (if, y) + D3 cos(x', z)cos(y',z)
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(cf. p. 8). Since we shall assume here as above that M
l
=M

2
=M

Q,

the simple relations (4, I.) will hold between the magnetic moments

and the magnetic forces.

The Surface-Conditions. Let now the system of coordinates z, y, z,

to which equations (55)-(57) are referred, be that particular one chosen

above, where the dividing-surface between the two crystals is taken

as ^-plane, etc.
;

our differential equations (55) and (56) will then

evidently assume the following familiar form on that surface :

>(58)

(cf. formulae (3, VII.)), where the index or 1 denotes that the

component moment or force to be taken is that or the sum of those

acting in the one (0) or the other (1) crystal respectively.

Incident (Electric) Plane Waves and the Reflected and Refracted

Waves. As above, let us represent the component electric moments

or oscillations X, F, Z in incident plane-waves that can be transmitted

in any assigned direction (A, /*, v) through the crystalline medium

(cf. Fig. 39 below) by the functions

K) .(59)

2-7TV 27T
whore s = Xx + py + vz and 71= =

A _/

(cf. p. 267), , ?;, denoting the direction-cosines of one of the two

possible (singular) directions of oscillation in the given wave-fronts

(A, /A, v).
Not only a and A, /x, i/,

but also f, 17,
and v, which latter

can be determined by Fresnel's construction (cf. p. 343) for any given
direction of propagation (A, /x, v), are to be regarded here as given.

The displacement in any wave-front may of course occur in any

direction, but, if that direction does not coincide with one of the

two singular directions peculiar to that wave-front (cf. p. 342), only
its components parallel to those singular directions will be propagated
as permanent waves, and, as we have seen above, each with a different

velocity. This evidently accounts for the familiar bifurcation of waves

or rays upon entering a crystalline medium. If both media are aeolo-

tropic, incident waves represented by the functions (59), where
, ^,

shall denote the direction-cosines of one of the two singular directions

in the given wave-fronts (A, /z, i/),
will evidently, in general, be

bifurcated both upon refraction and upon reflection
;
on the other
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hand, if the medium (0) of the incident waves is isotropic, there will

evidently be, in general, two refracted waves and only one reflected

one. Let us first examine the most general case, where both media

are aeolotropic. Incident waves represented by the functions (59)

will then give rise to two reflected and two refracted waves of the

following form :

where

and

.<? = A z + pQy +

<60)

(60A)

(61)

where se
= XJK + pey + v,

the ordinary and extraordinary reflected waves respectively, and

, ,<(-$ }

, -0--)' = ci'-n'(>, \ v o/V n2
o

~~ tt
o

where

and

(62A)

where se
' = \

e'x +^y + v
e'z, ........................ (63A)

the ordinary and extraordinary refracted waves respectively.

If we can determine the A, /*, v's of the above functions (60)-(63A) for

the reflected and refracted waves, we can find by Fresnel's construction

(cf. p. 343) the respective f, ^, fa and v's
;
that is, the latter quantities

may be regarded here as known, provided the former can be determined.

* Cf. foot-note, p. 358.
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Determination of the A, ^, v's and a's of Reflected and Refracted

Waves from Surface-Conditions. To determine the A, /z, i/s and the

's of formulae (60)-(63A), we make use of our surface-conditions (58),

which can be written in the explicit form

..... (64)

Eeplace the X's by their values on the given dividing surface, =

in the first condition (64), and we evidently have

This condition must now hold for all values of y and 2, that is, at all

points on the given dividing surface
;

this is evidently only possible,

when both

(66A)

and

The above formulae will now assume a much simpler form, if we lay

the plane of incidence (of the incident waves) in either the xy or the xz-

plane of the above system of coordinates x, y, z
;

let us choose here, as

in Chapter VII., the former as plane of incidence. We observe that

the generality of the given problem will in no way be affected by
this choice of the plane of incidence, for the only restriction put

upon the above system of coordinates was that the ic-axis be normal

to the given dividing surface, whereas the y and -axes were left

entirely arbitrary in that surface.

xy-Plane as Incidence-Plane. For the ?/-plaiie as plane of incidence

v = 0, and the latter of the two conditional relations (66A) will thus

assume the form
,;
= ; = ,

o
= ,e

=
;
........................... (67)

that is, both the reflected and the refracted waves will also be propa-

gated in the plane of incidence, the ^y-plane.

If we now denote the angle, which the normal to the wave-front of

any incident wave makes with the -axis, here the angle of incidence,

* Here the index (o in Fig. 39) referring to the ordinary waves, although

similarly written, is not to be confounded with that zero (0) employed above (cf.

formulae (58) ) ; as it is always evident which index is referred to, we shall

attempt no further discrimination in orthography.
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by <f>,
and the angles, which the normals to the wave-fronts of the two

reflected and the two refracted waves make with the positive and

negative #-axis respectively, here the angles of reflection and refraction,

by </> , <f>e
and <

', <f>e

'

respectively, as indicated in the annexed figure,

we can then write the direction-cosines A
/A,

A
Q /XQ , etc. in the form

>
e , y (68)

A
' = - cos

(/></, fiQ

' = sin

(cf.
the annexed figure).

>Q,
= - cos <, /*

= sn

x

FIG. 39.

Laws of Reflection and Refraction. On replacing the
ju-'s by their

values (68) in the former conditional relation (66A), we have

sn sn sn sn sn

the familiar relation (laws) between the angles of incidence, reflection

and refraction and the velocities of propagation of the incident, reflected

and refracted waves.

Oscillations in Incident, Reflected and Refracted Waves referred

to Incidence-Plane
;

the Azimuth of Oscillation. Since the above

incident, reflected and refracted waves all lie in one and the same

plane, the plane of incidence, we can refer their directions or planes

of oscillation to that plane. The angle, which the direction or plane
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of oscillation in any wave makes with its incidence plane, is now
known as its

" azimuth "
of oscillation. If we denote the azimuths of

the above incident, the two reflected and the two refracted waves by
0, 0Q Q

e and #
'

6
e

'

respectively, we can evidently write their component
moments in the form

X=aGos6sia<f>e

^ - V,V,0 V,V, ^ ,

in ft

y sin
<f>
- x cos <J>\~

with similar expressions for the component moments

of the extraordinary reflected wave, and

/

V-

.(70)

ZTO
= a sin C7 ,

with similar expressions for the component moments of the extra-

ordinary refracted wave (cf. Fig. 39 and formulae (60)-(63A) and (68)).

The Incident Magnetic Waves
;
their Amplitude of Oscillation.

Since, by assumption, Ml
=M

2
=M

B
in either crystal, the above electric

and the accompanying magnetic oscillations will take place at right

angles to each other (cf. formulae (20)); we can, therefore, represent

the component moments of the magnetic oscillations that accompany
the incident electric ones (59) by the functions

a = Age

.(71)

where A denotes their amplitude of oscillation, and
', /, f, their

direction-cosines of oscillation, are connected with the direction-cosines

, 77, f of electric oscillation and those X, /*,
v of normal to wave-front

by the relations
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(cf. formulae (32)). Replace in these relations A, /*,
v and

, rj, by
their values (67) and (68) and the following respectively referred to

the above system of coordinates (xy-plame as incidence-plane) :

= cos 6 sin
(/>, r)

= cos 6 cos
</>,

=sin#

(cf. Fig. 39), and we have
' = sin sin <, ?/

= sin cos <, f = - cos 0.

Replace f , 17', f by these values in formulae (71), and we can write

the component magnetic moments in the form

a =A sin sin
<f>

e

in(t- .(72)b = A sin cos <

inl t
)

c = -AcosOe V

(cf. formulae (70)).

To determine the amplitude A of the magnetic oscillations (72), we

make use of the first equation of formulae (55), which evidently

reduces here (zy-plane as incidence plane) to

v dt dy

where we are writing v for the velocity of propagation of electro-

magnetic waves in the standard medium (vacuum) instead of v
ot
which

we have been employing above for the velocity of propagation of the

ordinary reflected wave (cf. formulae (60)*). Replace here X by its

value from formulae (70), and we have

4?r . /> , "*(*-
y81" '

') dy-= am cos #sm <f> e
^ ' = -=-'- ;

v dy
which integrated gives

....A ysiiKfr-acos^

By formulae (4) (Ml
=M

2
=M

s
= M), we thus find the following

expression for c :

Mv .t
t _ y***-x*\

c = -=-a cos e
^ '

.

v

A comparison of this expression for c with the above (cf. formulae

(72)) shows that the amplitude A of the magnetic oscillations (72)

that accompany the incident electric ones (59) must be

MvA = -
-=-a,
9

where a denotes the amplitude of the latter.

*Cf. foot-note, p. 358.
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The expressions (72) for the component magnetic moments
, b, c

can thus be written :

(.

it sin d> - x cos rf>\*"
; )

Mv .= =-asm

. t . V sin <b - x cos d>\

H* )^ 'b = 0. sin Ocos<b
v

TIT /.. ?/sin<f>-a;cos<f>\Mv in(t---
* _Z1

c -=-a cos v e '

v

.(72A)

The Reflected and Refracted Magnetic Waves. Similarly, we can

write the component moments of the reflected and refracted magnetic
waves that accompany the reflected and refracted electric ones of

formulae (70) as follows :

.(73)

y sin <f>o+# cos $0\

with similar expressions for the component moments of the extra-

ordinary reflected (magnetic) wave, and

.(74)

U sin <^>'p
- x cos <ft'o~"

with similar expressions for the component moments of the extra-

ordinary refracted (magnetic) wave.

Since, by assumption, there is no variation in the constant of magnetic
induction in either crystal, the component forces acting in the above

magnetic waves will be proportional to the respective component

moments, the expressions (72)-(74).

The Amplitudes of the Reflected and Refracted Waves and the

Surface-Conditions. We have seen above that the two conditional

relations (66A), or, if referred to the incidence-plane, (67) and (69),

must hold, in order that the first surface-condition (64) may be

satisfied; the latter will now evidently be satisfied only, when the

following conditional equation holds between the a's and the 's :

*We write a, a
,
a' for the component magnetic moments a, a

,
a' to dis-

tinguish them from the amplitudes a, a
,
a' .
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or, if referred to the incidence-plane, the following equation between

the a'a and the 0's and </>'s :

a
f

cos
'

sin <

'

+ ae

'

cos O
e

'

sin </>/ |
= a cos 6 sin

<}> + a cos # sin < + #
e cos d

e sin (
e ;/

we obtain the former equation, on replacing the //-'s and vs by their

values (66A) in the surface condition (66), and the latter on replacing

the 's by their values in terms of the 6'a and c/>'s (cf . formulae (70) )

(the xy-pla,ue as incidence-plane) in the former.

The Surface-Conditions (65). On the assumption of the validity

of the conditional equation (75), we have one equation for the deter-

mination of the a's. To obtain other equations for the determination

of these four unknown amplitudes a
,
ae ,

a'
Q
and a'a we must make

use of our other surface-conditions (64) and (65). Let us, first,

examine the latter surface-conditions and of these the second one
;

we replace there the /3's by their values (cf. formulae (72A)-(74)) on

the given dividing surface, x = 0, and we have

- V
Q
a sin VQ cos < e v v o ' - ve ae

sin u
e cos </>e e

v r /

(ysin</>\
.

/ ?/siii<o\-
~) . n . in(t- -"I

mu u , ~ v,w~ r " + ^0*0 Sln ^0 COS ^0 6

. inM ^-^
;

)+ v
e
a

e sin e
cos ^>e e x " 7

.

By formula (69), which will evidently hold here, since the surface-

conditions must hold for all values of y (z) and t, this surface-condition

leads to the conditional equation

- v 'a
Q

f

sin
'

cos c

' - v
e
'a

e

'

sin 6
e

'

cos $/
= - va sin cos ^> + v sin cos < + veae sin e cos <$>e

.

By the same formula (69), we can now express the v's as functions of

the <'s, and thus write this conditional equation in the form

- a
'

sin B
Q

'

sin <

'

cos <^

' - ae

'

sin 0/ sin <
e

'

cos ^>/

= - a sin sin < cos < + a sin sin <^ cos
<^> + ae sin e sin <

e cos ^

Similarly treated, the other two surface-conditions (65) lead to the

conditional equations

M f

(a
'

sin #
'

sin2 <^

'

+ ae

'

sin B
e

'

sin2 </) | ,

^
,_ ,

= M(a sin sin2
</> + sin sin2

</> + e sin B
e sin

2
<^>e) J

and a
'

cos
'

sin ^>

'

-f ae

'

cos 0/ sin ^>/

= a cos # sin
<#> + a cos sin

</> + ae cos e sin <
g ;

the latter is the conditional equation (75) already derived from the

first surface-condition (64)
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The Surface-Conditions (64) between the Q's and the 72's; the

Expression for Q. The four surface-conditions just examined give

only three independent conditional equations (75)-(77) for the determi-

nation of the four amplitudes a
,
a

e ,
a'

Q
and a'e sought. To obtain a

fourth equation, we must have recourse to the two remaining surface-

conditions (64) ; let us examine here the second one. We must

now express the $'s of this surface-condition in terms of known

quantities, aside from the four unknown amplitudes sought ;
let us

first seek that expression for Q. For this purpose we introduce a

third system of rectangular coordinates x", y", z" with origin at 0, the

common origin of the two systems x, y, z and #', y',
z' already employed ;

FIG. 40.

the x"-axis of this new system shall coincide with the normal from to

the wave-fronts of the incident wave and the /'-axis shall be taken

parallel to the common direction of oscillation in those wave-fronts,

as indicated in the annexed figure. Referred to this new system

of coordinates the component electric moments of the incident wave

(59) can evidently be written

Y =ae



.(78)
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The components of this resultant moment Y" parallel to the

principal axes x', y', z' of the crystal (of the incident waves) are

evidently

X' = Y" cos (x', y")
= a cos (x

f

, y") *
*'

'
,

Y' = Y" cos (y
f

-, y")
= a co$(y', f)e*^

v
',

in(t+
X
"\

Z' = Y" cos (z', y")
= a cos

(z', y") e v v >
.

The component electric force Q acting parallel to the y-axis of

the system of coordinates x, y, z can now evidently be written in the

form

Q.
=F cos(', y} + Q' cos(y', y) + R' eos(z', y),

where F, Q', R' denote the component electric forces acting parallel

to the principal axes of the crystal (cf. Fig. 40) ;
since F, Q', R are

the component forces acting parallel to the principal axes x', y', z' of

the crystal, we can put

p - X' Q'-Y' R'- Z'123
(cf . formulae (3) )

and thus write the expression for Q in the form

VX' Y' Z'
Q = 47T

yr- cos (x , y) + -f)~
cos (y , y) + jr cos

Ll/j L>
2

JJ
3

or, on replacing here X', Y', Z' by their values (78),

Q = im rcOs(a', jnCQgfr. y) + co,(y-, gQcOS

^---/./ .A-l ,./,,*"\ I" C79 )

cos(x', ?/"), cos(^/', y") and cos (2', /") are the direction-cosines of the

resultant electric moment Y" with respect to the principal axes x'
t y', z'

of the crystal, that is, the direction-cosines
, 77,

of formulae (6) ;

these direction-cosines are now related to the direction-cosines //, q',
r'

the p, q,
r of formulae (47) of the resultant electric force F with

respect to the principal axes, by the formulae
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(cf. formulae (47)), where, according to the present notation, we are

denoting the direction-cosines of the resultant electric moment Y"

and the resultant electric force F with respect to the principal axes

x', y', z of the crystal by ', 17',

'

and p', q, r' respectively. By
formulae (30A) and (48A) these expressions for cos (x, //"),

cos (t/, y")

and cos
(#', y") can be written

where vr denotes the velocity of propagation of the ray.

By these values for the direction-cosines we can now write the above

expression (79) for Q in the form

(x"\t+^J /A\--
p IA,OVI-, y,o

v/
,
....................................... (80)

where (F, y} denotes the angle between the direction of action of the

resultant electric force F and the ?/-axis (cf. Fig. 40). This cosine can
rr

evidently be replaced by the quotient -, where F denotes the com-
-T

ponent of the resultant force F parallel to the y axis.

The component of the resultant electric force F in the direction

of the resultant electric moment Y" is now

and its other component in the direction of the (negative) normal

to wave-front p gjn e

(cf. Figs. 38 and 40), where e denotes the angle between the resultant

electric force F and the resultant electric moment Y" (cf. p. 350).

The components of Fcose and ^sine in the plane of incidence, the

^y-plane, are evidently
^cos e cos 6 and /'sin

respectively, where denotes the azimuth of the given oscillations,

and hence the components of these two component forces parallel

to the y-axis
F cos e cos 6 cos

<f>
and F sin e sin <

respectively (cf. Fig. 40).

The total component electric force acting parallel to the ?/-axis, F^

will thus be F
y (cos e cos 6 cos < + sin e sin </>) F,

hence F
y/F= cos e cos 6 cos

</> + sin e sin <f>.
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Replace cos(F, y)
= FJF by this value in the above expression (80)

for Q, and we have

(MF\^=_ . wo . _ r , _ ._^ '+
),

v2

or, since by formulae (48) and (48A)

v
cose = -,

(x"\
v = ____

g ywovw ,^-T-^^,,
+

' ............. (81)

The Expressions for $ and Qe . The determination of the expressions

for Q and Qe is similar to that for Q. The position of the auxiliary

system of coordinates <e ", yQ",
Z
Q

"
for Q is also roughly indicated in

Fig. 40. We find, as above,

and a similar expression for Qe
.

On evaluating cos (F , y) we observe, however, that the components
of FQ cos e

Q
cos and F sin e parallel to the y-axis must evidently be

written
-
FQ cos e cos Q

cos
</>

and F
Q
sin sin

<j>

respectively (cf. Fig. 40), and hence the final expression for Q in

the form

in^ )^o-^ ...... (82)

similarly, the evaluation of cos(Fet y}, etc., and the final expression for

e,,

The Expressions for Q(}

'

and Qe'. The expressions for Q
f

and Qe

'

will evidently be similar to that (81) for Q; we find

^l7

^^^ ...... (83)

and a similar expression for Qe'.

Derivation of the two remaining Conditional Equations from the

Surface-Conditions in Q and R. Replace the Q's by their values on

the given dividing-surface,
=

0, in the second surface-condition (64),

and we find, by formula (69),

a
Q\''

2M' (cos
'

cos <

'

+ tan e
'

sin
</> ')

+ a
e
've

'2M' (cos O
e

f

cos
<f>e

' + tan / sin
</./)

= av2M (cos 6 cos
<#> + tan e sin

<#>)
- a v 2M (cos cos

<^>
- tan e sin <

)

, cos C
- tan e

e sin </>e ),



.(84)
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or, on expressing the v's as functions of the <'s,

a
'

sin2 <

'

(cos 6
Q

'

cos <

'

+ tan e
'

sin <
')

+ a
e

'

sin2 <
e

'

(cos O
e

'

cos <
e

'

+ tan e
e

'

sin </)
= a sin2 < (cos # cos

<f> + tan e sin <)
- sin2 < (cos Q

cos
</>

- tan e sin<
)

- ae sin
2

<
e (cos O

e cos <
e
- tan e

e sin </>e),

where we have put M' =M (cf. foot-note p. 298), the fourth conditional

equation for the determination of the four amplitudes ,
ae,

a
'

and a/.

The last surface-condition (64) similarly treated leads to a fifth

conditional equation, which is similar to (84) but is not independent of

those already found.

Summary. The conditional equations (75)-(77) and (84) evidently

suffice for the determination of the four unknown amplitudes a
,
aa

a
'

and ae'. These amplitudes are, strictly speaking, the only remain-

ing unknowns in the above equations ; we observe, however, that the

relation (69) between the <'s and the v's gives only the ratios between

the sines of the former and the latter. To find the <'s and v's of

the reflected and refracted waves, for example the
<jf>

and # of the

ordinary reflected wave, to which any incident wave of angle of

incidence < and velocity of propagation v gives rise, we first determine

the direction-cosines A
, /I ,

v (X, /x, v) of the normal to the wave-

fronts of that wave with respect to the principal axes x', y', z' of the

crystal as functions of
</>

and the cosines between those principal axes

x', y', z' and the coordinate-axes #, y, z, to which the given dividing-surface

is referred (cf. pp. 355 and 358) ;
these direction-cosines are evidently

given by the expressions
A = cos

</>
cos (x', x) + sin < cos (x', y),

JJ.Q
- cos 4>Q

cos (/, *) + sin
</>

cos (/, y\
v = cos

</>
cos (z'j x) + sin

</>
cos (2', y)

we then replace X
, /Z ,

v (A, /x, v) by these values in formula (40),

and we thus obtain an equation between < and V
Q (v) ; by this equation

and the relation (69) between <, <
,
v and v we can then determine

< and V
Q uniquely as functions of <, v, the medium constants A, B, C

and the cosines between the coordinate-axes x, y', z' and x, y, z, all

of which are given.

The General Problem and its Solution. The actual solution of the

conditional equations (75)-(77) and (84) with respect to the four

unknown amplitudes offers no material difficulties. We observe,

however, that the further examination of the resulting expressions for

this most general case, where both media are aeolotropic, is of little

interest, since an empirical verification of the results could be

obtained only with difficulty, whereas, on the other hand, quite
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similar results can be deduced more readily from the simpler equations

that hold for the particular case, where only one of the adjacent media

is aeolotropic. The particular case generally investigated by ex-

perimenters, and thus of special interest here, is now that, where the

waves pass from an isotropic into an aeolotropic medium. We shall,

therefore, confine our ensuing investigations to this particular case.

The Medium of the Incident Waves Isotropic. Here v = ve
=

v,

so that there will be only one system of reflected waves instead of two,

and the four unknown quantities will evidently be the two amplitudes

#
'

and ae

'

and the resultant amplitude a
x
and azimuth O

l
of the re-

flected waves of that single system. The conditional equations (75)-(77)

and (84) will then, by formula (69), evidently assume the simpler form

O,Q
cos BQ sin <

' + a
e

r

cos 6e

'

sin
<f>e

' =
(a cos 6 + a^ cos OJ sin <,

a
'

sin #
'

sin
</>

'

cos <

' + ae

'

sin B
e

r

sin </>/ cos <f>e

'

=
(a sin 6 -

a-^
sin #

x )
sin ^> cos <,

Q sin BQ sin2 <

'

+ ae

f

sin B
e

f

anty,' = (a sin B +
a-^

sin B
.(85)

and a
'

sin2
</>

'

(cos &
'

cos
</>

' + tan e
'

sin
</> ')

+ a
e

'

sin2^' (cos B
e

'

cos
<j>e

f + tan
'

sin </)
=

(a cos a
x
cos 6^) sin2

< cos
</>.

The Uniradial Azimuths. The examination of the conditional

equations (85) can now be greatly simplified by the introduction of

the so-called "uniradial" azimuths employed by MacCullagh;* these

azimuths are those two particular ones of the incident waves, which

bring about the extinction of either the ordinary or the extraordinary
refracted waves

;
let us denote them by e and respectively. Such

particular values of B are consistent with our conditional equations (85),

for put there, for example, a
e

' = 0, and these equations will reduce to

the following, which can evidently always be satisfied :

^ O'cos
'

sin <

' =
(a cos + ^ Ii0

cos
lt0) sin</>, }

AQ sin BQ sin <

'

cos <

' =
(a sin 6 - A li0 sin 1>0)sin </> cos <,

A ' ' A '
' 9J ' / f^ A \ \ * 9*-t /C^A\

-ni0 sin
1/0

sin <PA
==

(ct sin t7 + A.^ sin o
1

) sin <p r (OOA^
and AQ sin2

(f>Q (cos B
'

cos
<f>

'

+ tan e
'

sin
<#> ')

=
(ft cos 60

- A
lt o

cos
1> )

sin2
^) cos <, ;

where
li0 ,
^

Ii0 and ^ '

denote the particular values assumed by Bv

3
and '

respectively for that value of B of the incident oscillations,

which brings about the extinction of the extraordinary refracted

waves; here
, 1>0 ,

A
li0 and A

Q

'

are evidently the four unknown

quantities, whereas a, </>,
<

',
B

'

and e
'

are either given or can

be determined as functions of given quantities (cf. above), being

entirely independent of the value of the azimuth of the incident

*
Transactions of the Irish Academy, vol. xxi.

2A
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oscillations. Since now the equations (85A) can always be satisfied,

the four quantities 6
,
Q

l>0 ,
A

l >0
and A '

being determined uniquely

thereby, it follows that there will always be a particular value 6 of

for each and every angle of incidence 0, which will bring about the

extinction of the extraordinary refracted waves. Similarly, it is

evident that there will always be a particular value 6e of for every
value of 0, for which the ordinary refracted waves will be extinguished ;

this value B
e and the corresponding values of the three other unknown

quantities 1>e ,
A

l<e
and A e

'

will evidently be determined by similar

equations to the above (85A) ;
we obtain these equations on replacing

there the index (u)* by e. For brevity we shall henceforth drop
these indices, and the equations in question will then hold for either

uniradial azimuth or e
.

It follows from the above that for any given angle of incidence

there are always two uniradial azimuths and
e ,
that is, two values

of 0, for which either the extraordinary or the ordinary refracted

waves respectively will be extinguished ;
these uniradial azimuths will

evidently differ for different values of $ and, in general, from one

another for any given 0.

Determination of the Uniradial Azimuths. The actual determination

of 0, 0j, A^ and A' from equations (85A), (after we have dropped
the index (<?)*) offers no difficulties

;
solved with regard to a sin 0,

A
l
sin P a cos and A^ cos

1? they evidently give

f\ AI /ysin 0' sin(0 + 0')a sin = A sin 6 -^L .

r 7
,

sin sin 20

.sm 6, = - A' sin ff

sin sin 20

^ tl /,/sin 0' cos #'(sin20 + sin 20') + 2 tan'sin2
0'

a cos (3 A cos u . .

'

sm0 2 cos v sm 20

A , /y
sin 0' cos #'sin (0 + 0') cos (0 -

0') + tan e' sin2 0'
A. COS (7 - -

sm cos u sm 20
and
'A f^ AI n> siri0' cos #'(sin 20- sin 20') - 2 tane'sin 2

0'
A-i COS

\J-\
= A COS v

.

'

SH10 2 cos 0' sin 20

A , n, sin 0' cos ^'sin(0
-
0')cos(0 + 0')

- tane'sin2
0' mA COS "

; -=- ; )

sm cos 8 sm 20
hence

A _ sin 6' sin (0 + 0')

cos #'sin(0 + 0')cos(0
-

0') + tan e'sin2 0''

A sin ^'sin(0- 0')

cos #'sin(0
-
0')cos(0 + 0')

- tan 'sin2 0'

* Cf. foot-note, p. 358.
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and

sm((/>-f </> )

n cos#'sin(< - -
,= a cos 6 -- . / ^--^-y ^f , 9 T,>

cos sin(</>+ 9 )cos(9 -9) + tane sin519

, a . > sn <> sn
sin = sin 6

.(87)

sin<' sin
(</> + <')'

, x,,
xx sn

COS = ft COS -;
>' cos & sin

v </> + (/>')
cos(<- </>') + tan e' sin2 </>"

from which the values for A^ and ^4' follow directly.

If both media are isotropic, e' = and formulae (86) reduce to

tan?

tan(9
r

cos (9 + 9;

hence tan 0, = tan f? ^, I

cos(</> + </>)
\ (8oA)

tan & tan cos(<
-

</>'). J

Observe that these expressions for the azimuths are identical in form

to those (41) found in Chapter VII. for two isotropic media.

Apparent Similarity between Expressions for Component-Ampli-

tudes at j_ to Incidence-Plane of Reflected and Refracted Oscillations

along Uniradial Azimuths and those for same Component Amplitudes
in adjacent Isotropic Media

; Similarity only for Perpendicular

Incidence. On comparing formulae (87) with those (18 and 19, VII.)

(cf. formulae (34A, VII.)) for two isotropic media, we observe that

the component amplitudes of the reflected and the refracted oscilla-

tions at right angles to the plane of incidence are given by the same

expressions in both cases, whereas those in the plane of incidence

undergo changes, when the isotropic medium 1 (of the refracted

waves) is replaced by an aeolotropic one. Waves incident on the

surface of a crystalline medium would, therefore, be reflected and

refracted apparently according to the same laws as on the surface

of an isotropic medium, when their oscillations were taking place at

right angles to their plane of incidence
;
for put =

7r/2 in formulae

(87), and we have
. .

A-, sm 0, = - a .

sm <-
sm

sn < sn 2<
-r-~ -

, ,, ,

sin 9 sin (9 + 9;
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hence tan Q
l
= tan ff = oo

,

or Q
l
= & = irft, ............................... .(88)

sin c/> sinA = a

.(89)

*> sin
((/> + </>')

the expressions (18 and 19, VII.) (cf. formulae (34A, VII.)) already

found for adjacent isotropic media, when the incident oscillations were

taking place at right angles to the plane of incidence. These formulae

(89), although identical to formulae (18 and 19, VII.) in form, differ

from them materially in the following respect : The angle of incidence

</> was entirely arbitrary in the latter, whereas only those two (one)

values of
<f>

are compatible with the former, for which 6 = 7r/2 is an

uniradial azimuth. To determine those values of <, put 9 = Q l
= 6' = ITft

(cf. formulae (88)) in formulae (86) for 6 and Qv and we have

_ sin
(</>

-
</>')_~~

tan sin2
(f>'

tan e' sin^'
'

hence
</>
=

<f> ;

that is, the two values of
<f> sought evidently coincide here.

For < = <' = the expressions (89) for A
l
and A become now

indeterminate ;
to find their real values, we write them in the form

00* -

sin<'

and A' - 9/1
sm <

sn > sn <>r
.

-L-

sm</>

replace here ^ by its value -
(cf. formula (69)), put then

<f>
=

<#>'
=

0,
sin <p v

and we have A,= -a^-^, A' = 2a _____ -] ............... (90)' '

these expressions are now identical to those for the component ampli-

tudes of the reflected and refracted waves, to which waves striking the

surface of an isotropic insulator at perpendicular incidence (cf. formulae

(36, VII.)) give rise. For waves incident on the surface of a crystalline

medium (and whose oscillations are taking place at right angles to their

plane of incidence) we must, therefore, replace formulae (89) by these

particular ones (90) and modify our above statement as follows : The only

angle of incidence, at which waves (whose oscillations are taking place
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at right angles to their plane of incidence) will be reflected and re-

fracted on the surface of a crystalline medium according to the same

laws as on the surface of an isotropic insulator, is perpendicular inci-

dence, </>
= 0. The validity of the following more general statement

then follows directly from the above development (cf. formulae (87)

and (88)) : The only angle of incidence, at which waves will be reflected

and refracted on the surfaces of crystalline and isotropic media according
to the same laws, is perpendicular incidence.

The General Problem
;
Azimuth of Incident Oscillations Arbitrary.

Formulae (86) and (87) evidently hold only for the two particular cases,

where the azimuth of the incident oscillations is one of the two uniradial

azimuths. The general case, where the azimuth 6 of the incident oscil-

lations is entirely arbitrary, can be treated as follows : We determine

as above the two uniradial azimuths that correspond to the given angle
of incidence $ and resolve the incident oscillations of arbitrary azimuth

6 along those two azimuths
;
each component will then give rise to only

one refracted wave, the one to an ordinary and the other to an extra-

ordinary wave. Since now these component oscillations take place

along uniradial azimuths, each can be treated singly as above, the

azimuths and amplitudes sought being determined by formulae (86)

and (87) (cf. also below).

Determination of Component Amplitudes of Incident Oscillations

along Uniradial Azimuths. To determine the component-amplitudes
a
Q
* and a

e along the uniradial azimuths * and 6
e respectively of

FIG. 41.

oscillations of azimuth 9 and amplitude a, we represent these ampli-
tudes and azimuths in any wave-front graphically as in the annexed

figure, where a is the diagonal of the parallelogram, whose sides

* Cf. foot-note, p. 358.
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and a
e are.sought The figure evidently gives the following geometrical

relations between these quantities and the auxiliary ones a, /:?, a', j3'
:

-p.

= tan \JA ,

-
;
-

77 == 2 7T" >

a cos a sin v tan We

-- .

a tan 6e

On eliminating a' and j3' from the last four relations, we have

a cos 6 tan - a = /3 tan

and a sin 6 - ft tan e
= a

;

which give the following values for a and fi :

_ (sin
- cos tan 6e)tan 6
tan 6 - tan Be

cos tan
ft

- sin
and fi

= a .

tan 9 - tan e

Replace a and /3 by these values in the first two relations, and we

find the following values for and ae , the component amplitudes along

the uniradial azimuths 9 and e respectively :

sin 6 - cos tan 9e

sin - cos 6 tan e

sin 6 cos 8 tan

where and e are to be replaced by their values from formulae (86).

The Amplitudes of the Two Refracted Waves. The amplitudes A Q

'

and A e

'

of the two refracted waves will evidently be determined by
the formulae

sin < sin 2^>

and

:

sin <
K

'

sin

(92)

</>
cos

K
'sin 2<

(cf. formulae (87)), where K is to be replaced by (o)* for the ordinary

and by e for the extraordinary wave and the component amplitude

a
K by its respective value from formulae (91).

The Resultant Amplitude and Azimuth of the Reflected Oscil-

lations. The amplitude a^ of the reflected oscillations will evidently

be the resultant of the two component amplitudes A lt0 and A lt6 ,
whose

values are determined by the formulae

* Cf. foot-note, p. 358.
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'

Ck
K
= -aKsm6

-a cose
j/. * ^K^^^vy ZT> TJ j /\ 7TJ j /\ 9 j ''

cos e/
K
sin (9 + 9K ) cos (9

-
</>K ) + tan e

K sm29K

(cf. formulae (87)), where K is to be replaced by (a) and e respectively

and aK by its respective value from formulae (91).

The resultant component of the two component amplitudes A^>0
and

A
l<e

at right angles to the plane of incidence is evidently

and their resultant component in that plane

A
1<0

cos 61,0 + ^i, e cos 9]>e

The amplitude x
of the reflected oscillations will, therefore, be

given by the expression

f ^ a sin(9-9,VI2

a'2 = V aK sin K^^r TT\
L^B sm(9 + 9K )J

in2
9;i

in29;J
,^ v:

LA
'

cos 6>; sin (9 + </>;;
cos (9

-
</>;) + tan K sin

and their azimuth #
x by

ten ^ =__ > 9__ (95)

y^
/ / ' /

K ' K

The general problem can thus be treated as follows : We determine

first a
Q and ae as functions of

, 0, B and 6
e by formulae (91), then

the 6K's as functions of 9, 9^, K

'

and eK

'

by formulae (86) and lastly

9K', 0^ and
K

'

as functions of 9, v, etc. by Fresnel's construction (cf. also

p. 368) ; the amplitudes A$ and A^ of the two refracted waves then

follow directly from formulae (92) and the amplitude a^ and azimuth
1

of the reflected wave from formulae (94) and (95) respectively.

Coincidence of the Uniradial Azimuths of the Reflected Oscillations
;

the Angle of Polarization. It is evident from formulae (93) that there

is at least one angle of incidence 9, for which the uniradial azimuths

li0
and Q

l e of the two component reflected oscillations along those

azimuths will coincide with one another. The condition that these

two uniradial azimuths coincide is

tan6 = tan 6
1>e ,



M I'UTKOM \<, \ITIC niK

\\lnoh, liy formulae
('->

>v can evidently l

tUUO
MUI

('l' '/'

' ' '
-

i>
u

tan

; '"' !
'

l% */') + tun.

in, I .

...
^

where ! denotes tlu> unglo of inotdoneo sought. It is evident from

this oonditionul equation lor tlir (lotonuiiiutioii of 1* ili.n -I- \\ill l> t
>

u fuuot-ioii ot
(() >, ,

K ', oti\, but not of tlu> u/,iuiutli (> oi th. nhulrnt

(woiUutioiiM ; \vo olKM^>r^^^ thut tlio coiupiMUMit niuplitiulrs ,
tuid iln

tlio uuirmlitil u/iwutliH O
u
uiui O,, ivspootivoly uro alone t'niu iu>n .M ilu

nxiiuuth V
(of. U<lo\v). Kor uny JJMMI out> (oryt*U tuul i^tlwting sur

fuoo givon) 'I
1

will, thoivforo, ho dotonuinod hy ono und tho stuuo vulno

for till vuluoM of ^, On tho othor hund, sinoo for uuy gi\oti ! ilu-ro

uro only two miirudiul uy.iinntlis (>
u und O

v , wuvos iuoidoiit u( that uu^lo
I

1

\\tll nil lo rotlootod in ono und tho sumo pluno (^ t ),
whutovoi- 'v

thoir u/iinuili. .i .>-;rilliition. It' wo lot ordinary or non polari/.od

\v i\os full on tho surfuoo of a orystul at this j^rticulur un^U-- ol

inoidonoo -I
1

,
tli.-v \\ill, thoroforo, ho rollootod us liuourly polurixod

onos ; this aii^lo '!' is thns known us tho un^jlo ot jml.n i ,>M>H v t

ulso u.
%

J7i)), \\'o huvo now found in Chapter Vll., whon wuvos W<MV

inoidont' on tho snrfwo of an isotix>pio insulator at tho uujjlo of

polari/.ation, that only tho oompouont osoillations at right anglo>- t

tho uluno i>t inoidonoo woro it>tlootod .
\N* X

^>l>s^^r^^^ that tin. is no!

ouso horo, whoro tlu^ rollortiu*; surfuoo omployod is ih.n ol .1 crystal,

NM, !.\ loriunla (W>) t tho a-unnth (\ of tho rotlootod osrillutions \\ill.

in gonorul, ho iptiti^ arlur.rv, und not ir/3 (of. Kx, '.'
;

i at

ond of ohaptor). TluMHiuooptioii that only tho ooiuponoir, o

Ut right anglos to tlo j>l.mo ot inoidouoo aro rollooloil tor th

|Hluri-'.alMn
i-, not. thrictciv, tngeuoruKidontioaltoth.it ot po

The Reanltant Amplitude of the Reflected

lVl.-m-.Mtuu l.,istly,
\\,- olk^orvo, ,ilili>Mi : -,h t

l und tlu" tw rospootixo nnirudiul a muith-, t>,,

llations, which aft 1 thon oo,nal, aro omuoh
uaiwuth V oi iho inoidont oscillations, thai tho

<, (>f tho roHooted osoillutions is thon a fuuotion ot th.u a-nnnth,

tor d
{

is, hy fornuilu (1H), u function of c u and and tho latter uro

functions of ^
(of. fonuulao (V\

Total Reflection. Atimuth of Incident OsoilUtiona An UniradiI

one. The uhovo fonuulao for rotlootion und rofruotion evidently hohl

only for partial rotloolion. that is, for tho two oases, \\horo

f > <\' und r^ i\\ hut



TMTAL lUBFUrmX IS

TW fete** <**& *** TCHM

*<

tXNNk SHMM) *4w*r twfr Ol\m*iy Of lift

is tofeUJy %atl^pitAid in ti^ Uii^r,

Own l ***! tdlM^Mi (ftvm tW <VxmuW tar ^Nr^U
of n tsofera^io ift^Utw; TO <dtaun \VMM^C

on v^pbidi^ w t^ forauri** tar fvMrt^U r^Wi^ ^ tit*

ol

*hMS* iMiMdlMttfy |HW ^t^Hi^ tV ory^u^ v
ot\

Mid 3S1 iwl ikft KJinid w^ilUti^^ will V \

now
of

or 6^ j for pw^ijU ^v^vtiou tho w*mh*ui

nd Aiumuth of

"** ^*v -.*.-{;
ro

thoir oompouout amplitud* *t i%hi ai^W u> th* pkw* of

>(<f + v^ u-mt *if*
..m.in^ J

iv thi> iwdwt (*) or to Q % f anv

the uninuiuJ wtimiuh 6^ or 6, fM|cn\ oly h* Ixvn ilropixxl \ot\ ^
For iota! ivflocnon ^o nv.^t now ivpUot> :lu^ ivd ^n^lo v-> by tho com

V-^\ ^--^
'

-M tormulM(9T) hrtho^m^mM
is, wo must inn thoiv sin o sinis- ? i K> >

p. -JStfV Tho oxpnvwiou for tho

los to tho hno of inoitlonro will thou ;vss\uuo th

.. <>
- ~ *

')
- J + oo + sii^r



378 ELECTROMAGNETIC THEORY OF LIGHT.

To determine the real amplitude and change in phase of the

respective component oscillations, we must now bring this expression

into the normal form
. . ~ a sin Ar

iw
i

A, sm BT = - =-5 . 0/ ._ r-r^sm20-sm 2
(7r/2-M0)

asm0
+ t sin

sin2 - sin2
(7r/2 -M0')

where N and Wj are sought in terms of
</>
and (?r/2 + z0') (cf. Chapter

VII., Total ^Reflection). On comparing the real and the imaginary

parts of the above expression with the respective ones of this ex-

pression, we evidently have the two following equations for the deter-

mination of N and Wj :

sin2 + cos 20 sin2
(7r/2 + i0')

= NCOS c^

and . sin 20 sin (rr/2 + t0') v/sin
2
(7r/2 -M0')

- 1 = iV sin c^,

which give N= sin2 - sin2 (7r/2 + i<f>)

_ sin 20 sin(n-/2 + z

iW ~

We can thus write the above expression for the component amplitude
at right angles to the plane of incidence in the form

i arctan
8in ^ sin W*+*fr') */ .sin^7r/2+^)- 1

AI sin 6j
= - a sin 6^ BflS?55nNk*^5WJ ............. (98)

It follows from this expression that the given component oscilla-

tions at right angles to the plane of incidence will undergo a change

only in phase upon total reflection, the same result, which we found,

when oscillations taking place at right angles to the plane of incidence

were totally reflected on the surface of an isotropic insulator (cf.

p 285) ;
we observe, moreover, that this expression for the change in

phase is identical to that found in Chapter VII, where the reflecting

surface was that of an isotropic insulator (cf. formulae (49, VII.)). It

thus follows, when the incident oscillations are taking place along

either uniradial azimuth, that their component oscillations at right

angles to the plane of incidence will be reflected in the same manner

as on the surface of an isotropic insulator.

Let us next examine the component amplitude of the given reflected

oscillations in the plane of incidence
;
for total reflection the expression

for this amplitude will evidently assume the form

-tane'sin2
(7r/2-M0') /QQX

-^-p= =-, (99)
cos#'[sin0sin(7r/2-H0

/

)-icos0\/sin
2
(7r/2-B0)

-
1]

+ tan t sin2
(7r/2 + 0')

(cf. formulae (97)), where, however, the azimuth & and the angle e',
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both of which are functions of <'
(cf. above), are to be expressed in

terms of 7r/2 + i^' in place of
</>' ;

as the actual determination of these

quantities would now demand rather dilate geometrical investigations,

which for the general case are of no special interest, we shall imagine
the same as already determined and in the desired form

cos #'=/! 4^y2 and tan e' = /^ + ih
2,

............... (100)

where fv /2 , ^ and h
2
shall contain (7r/2 + i<f>) only in the form

sin (?r/2 + i<f>')
and x/sin

2
(?r/2 + z</>')

- 1

<cf. pp. 283 and 286).

Replace cos & and tane' by their values (100) in formula (99), and

we can write the component amplitude sought in the form

(/i + {/3)[sin^sin(*-/2 + i<j>) + icos <\/sin
2
(7r/2 + i<f>)

-
1]

iW
i
-

x/sin
2
(7r/2 + ^')

-
1]'

+ fa + ih
2)sm

z
(ir/2 + i<')

sin(7r/2 + ^') -/2
cos

_ +/2
sin

</> sin(7r/2 + ffi)
- /^

2
sin2(7r/2 + i^')]

^sin <^> sin(7r/2 + i<f>) +/2
cos <f>\/sin

2
(7r/2 + ^')

+ /i
1
sin2(7r/2 + ifi) + i[-/1cos<^v/sin

2
(7r/2

+/2
sin

</> sin(7r/2 + i<^') + A
2
sin2

(7r/2 + i<f>')']

multiply both numerator and denominator of this expression by

/jsin (f> sin(7r/2 + i<f>) +/2
cos </>\/sin

2
(7r/2

+ /i
1
sin2(?r/2 + i<j>') -i[ -/jcos <^v/s

+/2
sin

<f>
sin (?r/2 + i<')

and we find, on separating it into its real and imaginary parts,

(/i
2 +/2

2
) [cos

2^ - cos 2(/> sin
2
(7r/2 + ty')]

-
(/^

2 +
x sin4(7r/2 + >') + 2(/^2 -/2

/i
1)cos(/)sm

2
(7r

x x/sin
2
(7r/2 + i(/>')-l + 2^[(/j

2 +/2
2
)sin <f>

cos

x sin(7r/2 + i<j

cosG -acos0
~

(/iA2 -/2;h) sin < sin3 (7r/2 + 1^

(A
8 +/a

a
)[inV/2 + ^) - co8] - 2 (/A -/A

x cos < sin2 (7r/2 + ^')xsin
2
(7T/2 + *</>')

- 1

+ 2 (/A +/2
fc
2)
sin sins (vr/2 + ^')

+ (V + A
2
2
)sin

4
(7r/2

Avhich can be written in the normal form

(101)
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where N and Wj are evidently determined by the expressions

(/i
2 +/2

2
)
2
[cos

2
</>
- sin2

(7r/2 + ^')]
2 + 4 (fji2 -fjh )

x sin2 (7r/2 + ifi) [cos
2

<
- sin2

(ir/2 + i<')]

x [(/i
2 +

x sin2
(7r/2 + <')]

- (V + A
2
2
)
sin4 (77/2 + i<')

x (2 (A
2 +/2

2
) [cos

2
c/>-cos2^sin

2
(7r/2+^)+4(/1

A
2 -/A

x cos $ sin2 (7r/2 +^ sinV/2 + *')
~ 1 ~ (V + V)

xsin4
(7r/2 + *<')} _

K/i
2 +/2

2
)[cos

2
<#>
- sin2 (7r/2 + ^)] + 2(/^2 -/A)

x cos
(?)

sin2 (7T/2 + ^') xsin
2
(w/2 + ^')

- 1 - 2 (/^
x sin

<#>
sin3 (ir/2 + i<f>')

-
(h* + A

2
2
) sin

4
(7r/2 + i<f>') }

2

and

(/i
2
+/2

2
)
sin 2<^ sin

(
7r
/
2 + ^') \/sin

2
(7r/2 + e</)')-

-2(/A-/A)sin^sin3
2
2
)[cos2^- cos -^sm2

(7r/2 + ^')]
- (V

x sin4 (7r/2 + ^') + 2(/i/i2 -/A) cos
<#>

sin2 (7r/2 + ^'

._
(/i

2
+/2

2
)[cos2^- cos -^sm2

(7r/2 + ^')]
- (V + V)

x

Actual Determination of & and e'. We have observed that the

actual determination of & and e' or fv f2
and h

19
h
2 respectively (cf.

formulae (100)) would demand dilate geometrical investigations; on

the other hand, the determination of e' or h
lt
h
2

as functions of & or

/!, /2
and the other variables offers no material difficulties, at least for the

particular case, where the principal axes x'
t y' t

z of the crystal coincide

with those x, y, z, to which the reflecting surface is referred. Let us

examine here briefly this particular case. By formula (F), Ex. 14, at

end of chapter, the angle e', which the ray makes with the normal

to wave-front, is now determined by the following expression in

terms of 0, v'
t </>, <', 0', w' and the medium constants A B' C', when

the principal axis x of the crystal coincides with the normal
(a;)

to the

reflecting surface :

cos =
\M /4cos^#'sin'2 </>' + #'4 (cos B' cos

</>'
cos o>' - sin 0'sin

+ C"4
(cos 0' cos

<ft'
sin a/ + sin B' cos a/)

2

where w' denotes the angle, which the principal axis y' or z' of the

crystal makes with the coordinate axis y or z respectively, to which the

reflecting surface is referred. For the given case, w' = 0, this expression

for cos e' reduces to

COS = -.-

in2
</>' + J5'

4 cos2#'cos2
</>'

-I- GY/4 sin2 <9'
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or, if we replace here v by its value in terms of v, <j>
and <' from formula

(69), to

To obtain the expression for cos e' for total reflection, we must now

replace the real angle <' in this expression for cos e' for partial reflection

by the complex one ir/'2 + i<f> ;
we then have

cos . =

or, on writing cos 6' here in the complex form/! + ifz (cf. formulae (100)),

& sin2 (ir/2 + i<l>')
COS

sin2 < J[(A*
- '4

)
sin2

(7r/2 + i<j>') + (B* - G"4)] (/x
- i

which gives

_

I

)sin
2

<

\/ \x ain

tan e' =

To bring this expression for tan e' into the desired form /^ + eA
2 (cf.

formulae (100)), we square it and separate it into its real and imaginary

parts ;
we then find the two following equations for the determination

of the two real functions Ji
l
and h

2
in terms of fv /2, </>, v, sin (77/2

and the medium constants A', J5', C' :

(/i
2 -72W4 - /4

)sin
2_+ (7

/4 sin4
<fr
- y4 sin4 (7r/2

and
/4 - a /4

)]sin
4

<f> _

(105)

~

*4 sin4 (7T/2

Upon the determination of
h-^

and A
2
from these two equations we

could then express tan e' in the desired form ^ + ih
2

.

Lastly, we observe that for the given particular case the azimuths

OQ and O
e

'

would be determined in complex form by the directions

of the principal axes of the ellipse intersected on the plane

Wsin2
(7r/2 + ^')- 1 B+ n(flr/2 + ty')fr-01

by the ellipsoid A'W + E'^f + C"2^2 - 1J
'

(cf. formula
(l), Ex. 14, at end of chapter).

The Resultant Totally Reflected Oscillations Elliptically Polarized.

It follows from formulae (101)-(103) that both the amplitude and phase
of the above component oscillations in the plane of incidence will undergo

changes upon total reflection, and, moreover, from the complicated
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form of the expressions for those quantities, that these changes will not

be the same as those suffered by oscillations taking place in the plane of
incidence on the surface of an isotropic insulator (cf. formulae (62)-(67)

VII.); in this respect the given component oscillations in the plane of

incidence will differ from those at right angles to that plane, the latter

alone being totally reflected as on the surface of an isotropic insulator.

It is thus evident that the resultant totally reflected osc Rations, to which

incident oscillations taking place along either uniradial azimuth or

Oe give rise, will, in general, be elliptically polarized. We determine

the two uniradial azimuths, on replacing in the expression for tan0

for partial reflection (cf. formulae (86)) the real angles of retraction

(f>Q
and

(f>e

f

by the complex ones ?r/2 + '<

' and 7r/2 + i(f>e respectively

and also the 0's and e's by their values, determined as formulated above

(cf. formulae (102)-(106)), in terms of <, v, ir/Z + ifi, A', B'
,
C' and

the direction-cosines between the two systems of coordinates x', ?/, z
f

and x, yy
z

;
it is evident that the two uniradial azimuths will also be

given here by complex quantities.

The General Problem: Azimuth of Incident Oscillations Arbitrary;

Totally Reflected Waves Elliptically Polarized. The formulae for the

general problem on total reflection, where namely the azimuth of

oscillation of the incident waves is arbitrary, can be deduced from

those above for the two particular cases, where the azimuths of oscil-

lation are the two uniradial ones, and in a similar manner to that,

in which the general formulae for partial reflection w'ere obtained

from those for the two particular cases (cf. pp. 373-375). We
observe that the two component oscillations at right angles to the

plane of incidence of the component oscillations taking place along
the two uniradial azimuths undergo each a change in phase, different

for each component, but none in amplitude, whereas the two component
oscillations in the plane of incidence of the component oscillations

along the two uniradial azimuths undergo changes both in amplitude
and in phase, and each component different ones. The resultant

totally reflected oscillations will, therefore, he elliptically polarized,

but evidently not in the same elliptic paths as when the incident waves

are reflected from the surface of an isotropic insulator.

Extinction of one of the Eefracted Waves
;
the Resultant Reflected

Waves also Elliptically Polarized. The treatment of the two particular

cases

v<vrt but * > sin q>> 7 and ;>sm<f>> -.

v VQ V
Q

ve

mentioned above evidently presents no further difficulties. Here either

only the ordinary or the extraordinary refracted wave is extinguished ;
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in the former case <

'

only is, therefore, to be replaced by the complex

angle 7r/2 + i<p ',
whereas </>e

'

remains real; in the latter <
'

remains

real and <
e

'

is to be replaced by ?r/2 + z</. In the determination of

the uniradial azimuths and the other variables a similar distinction

is also to be observed. It is evident that the resultant reflected

oscillations will also be elliptically polarized here, but in the two

cases differently and also differently from waves that are totally

reflected either from the surface of that crystal or from that of an

isotropic insulator.

EXAMPLES.
1. Show that formulae (10) are satisfied by the particular values (7) and (8) for

the component electric and magnetic forces P, Q, B and a, /3, 7 respectively,

provided the given waves are propagated with the velocity v, where

VT+

*V XV

Xpf X2
.f
2

/*
2
f
2

A"'^^ ~1

WaZ^
+
^7^

+
JVA,

~
M^D2J;

Replace P, Q, Jt and a, j3, y by their values (7) and (8) respectively in formulae

(10), and we have

_ _

t D

i A
on multiplying these equations, the first by , the second by 77 and the third by ,

and adding, we evidently find, since 2 + ?7
2 + f

2
=l, the above expression for the

velocity of propagation v. Q.E.D.

2. Show, for the particular case, where Dl :^D2
= DS

= D, Ml^M2
=M3

=M
and the magnetic oscillations (9) are taking place in planes parallel to the yz-plane

(cf. Fig. 37), that the general expression (A), Ex. 1, for v'
2 reduces to that (24)

found in text.

Here a = 0,

that is, by formulae (9),

^-1/77 = 0. (D2
=DS ) (A)

In addition to this relation between the direction-cosines \, /m, v and
, 77, ",

we
obtain another relation between these quantities, on differentiating formulae (6), the

general expressions for the component electric moments X, Y, Z for plane-wave-

motion, the first with regard to x, the second to y and the third to z, and adding ;

we have then
dX dY dZ _ ain

( -J)

(cf. formula (6A)).
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Formulae (1), which can, by formulae (3), be written in the form

47r dX _dp dy

VQ dt
~
dz dy

4?r dY _dy da

VQ dt ~dx ~dz

47r dZ_da dp
v dt

~
dy dx

give now, when differentiated, the first with regard to x, the second to y and the

third to 2, and added

+
VQ dt \ dx dy dz )

hence for wave-motion (cf. p. 10)

dX dY dZ_
dx

+
dy

+ dz~

Formula (B) can, therefore, evidently be satisfied only when

X +W + "r=0............. .............................. (c)

Beside this and the above relation (A) between the direction-cosines X, fj.,
v and

., 1}, f, we have the following familiar geometrical ones for the direction-cosines

themselves :

P +^+ f*=l .......................................... (D)
.and

Put now D^ D.^ D and M2
=M3

=M in the general expression (A), Ex. 1, for

2
,
and we have

: 2 F _ Xftfo?
1 MD

l

'

MD^ MD
J*P- AV _

L"
2
'?

2 + M
8^ -

[(X
2 + M2 + *)e -^ (Xf

Avhich by the above relations (A), (c), (D) and (E) reduces to

(F)

~ MD
Lastly, the elimination of 77 and f from the three relations (A), (c) and (D) gives

the following value for 2 in terms of X, /x, v :
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Replace
2
by this value in the above expression for v2

,
and we have

3. Show for the particular case, where D^D2
=D3

= D,

and the electric oscillations (6) are taking place in planes parallel to the yz-plane

(cf. Fig. 37), that the general expression (A), Ex. 1, for v2 reduces to that (27)

found in text.

Here X = 0, hence, by formulae (6),

= ......................... ........................ (A)

As in the preceding example, the same relations (c), (D) and (E), Ex. 2, evidently

hold here.

On putting D2
=D3

=D and M2=M3 Af in formula (A), Ex. 1, we find the

same general expression (r), Ex. 2, for v2 . By the above relations this expression

reduces now here to

where 77 and f are to be replaced by their values in terms of X, ft, v. The given
relations evidently give the following values for 77 and f :

77= -j=^
= and f= T .- -

V /* + v V^r+ V1

<(cf. formulae (c), Ex. 2, and (A) for choice of signs).

On replacing 77 and by these values in the above expression for v2, we find

or, since X2 + /*
2 + v2= 1

,

4. Compare the results obtained on pp. 336-339 for the case, where Z>j

and M
l^M2

=M3,
with those found for the most general empirical case, where

A^A <:A but M
i
=M2

=M3 .

5. Show that formulae (46A) reduce to

vJ = v 2= B*

(cf. formula (44) )
for waves propagated along the optical axes.

6. Show that formulae (46A) reduce to the following in the uniaxal crystals
B=C:

v<?=C*
and ve

*=A 2 -(A 2 -C2
)cos

2u

(cf. formulae (40A)), where u^ = u.2
= u.

7. Determine the form (plane of oscillation, etc.) of plane magnetic wave that

can be transmitted in any assigned direction (X, /*, v) through a crystalline medium.
We represent the component magnetic moments a, b, c acting in any plane-

wave in the form

2B
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where /, 17/5 / denote its direction-cosines of oscillation in any wave-front

at the distance

s= \x + py + vz

from the origin of the system of coordinates x, y, z (cf. Fig. 37), b its amplitude
of oscillation and v

l
its velocity of propagation ; here X, p, v and b are given and

i' V &' sought.

Replace the moments a, 6, c by their values (A) in formulae (29), and we find on

putting J/j M2=MS the following conditional equations between the given

quantities, X, /j., v, b and A, B, C, and those sought, /, 77/5 f/ :

_ XV) -^ (Xft'
- iO

-
/tfi')

- (7
2X(^1

' - XV),

On introducing here that direction, which is at right angles to the normal

(X, p, v) to the given wave-front and to the direction of oscillation (/, V* /}

sought, we can write these conditional equations in the form

(B)

(cf. formulae (32) ), where 1? 77^ ^ denote the direction-cosines of that direction.

Multiply these conditional equations (B), the second by v and the third by /

subtract, and we have

or, since
i
= "V-/tfi'

(cf. formulae (32)),

M- 1
a
){1=X/1>

where f, =A'^ +B^ + i v
(c)

similarly, we find

(/^-VK^/i and (C
2 -^2

)^ =

These equations are similar in form to those (31) and (31A) found in text for

plane electric waves ; the following formulae will, therefore, hold here for the

magnetic waves :

(of. pp. 341, 342). Observe the similarity between these formulae and those

(34)-(37) for the electric waves : v and
, 77, f of the latter are replaced here by vl

and j, 77^ fj respectively, whereas ^', 17', f are identical to ^', 77^, fj'. It thus

follows that the magnetic oscillations will take place at right angles to the electric

ones that can be propagated through the given medium, whereas the velocity of

propagation of either of the two possible systems of plane magnetic waves that can

be transmitted through the medium will evidently be that of the electric waves,

whose oscillations are taking place at right angles to the magnetic oscillations

(cf. formulae (E) and (F)), that is, Vj may be replaced here by v.

8. Determine the amplitude of the magnetic oscillations that accompany the

electric oscillations (6) of amplitude a in any assigned direction (X, /x, v) through
a crystalline medium.
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We represent the component moments a, b, c of the magnetic oscillations in

question in the form (A) employed in the preceding example ; here however their

resultant amplitude b is not given but is sought. By formulae (4) the component
forces a, ft, y acting in these magnetic oscillations can then be written in the form

i*(t-l)
4-rr ..

,
\ /

.(A)

4?r
,

\ /

7=F ^6

where we have put Ml
= M2=^fs and replaced /, ?;/, f/ and vx by ', 77',

' and v

respectively (cf. Ex. 7).

Replace now P, (J, R by their values (7) and a, , 7 by the above values (A) in

formulae (11), which always hold between the component electric and magnetic
forces acting in electromagnetic plane- waves, and we find the following conditional

equations for the determination of the amplitude b in terms of known quantities :

Squared and added, these equations evidently give

Observe that b is here a function of the direction of propagation (X, p, v).

9. Show that the following relation holds between the resultant electric force

F and the resultant electric moment Y" prevailing in electromagnetic waves

transmitted through a crystalline medium :

/,'_
"" "' r^"

y"
v2 Vcos e

(cf. formula (80), where Q=Fy ).

10. Examine, as in Chapter VII., the rotation of the plane of polarization upon
the reflection on the surface of a crystal of waves incident at different angles
and of different azimuths of oscillation 6.

1 1. Examine the general problem on reflection and refraction on the surface of a

crystal for perpendicular incidence.

Here, = 0, hence
1
=

K'^0 (cf. formula (69)), and the expressions (93A) and

(93fi) for the component-amplitudes at right angles to and in the plane of

incidence respectively of the reflected oscillations become indeterminate ; to find

their real values, we write the general expressions in the form

sin
. 7-7 COS K

- COS
IT* * s* -^ . ~ sin <

2, Ai K sin 61 K= -
2j aK sin 9

and

cos 6A
,
cos - cos K

'

)

- tan eK
'

sin 0/
2 Ai K cos 61 K= 2 aK cos9K ^^ L ,

1(CI=0> e "=' e
cos 9m'[l=2-, cos + cos 0.' )

+ tan eK
'

sin K
'

K ' T *"
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replace here J^Lr. by its value
,
from formula (69), then put =

K
' = 0, and we

sin <pK VK
have '-

.........................

and 2 -4i, Kcos 0i, K
= 2 aK cos6K ,

\

The expressions (92) for the component-amplitudes of the (two) refracted waves

also become indeterminate for =
K

' = 0; similarly, we find the following real

values for those expressions :

(B)

and AJ cos QJ = 2aK cos QKK

where K= and e. Observe that both these (B) and the above formulae (A) no

longer contain the angle eK'.

The expressions (86) for the uniradial azimuths K and liK also become indeter-

minate for =
; similarly, their real values are found to be

K=0K
' and e1)K=-0; ; (c)

the uniradial azimuths of the incident oscillations will, therefore, coincide here

with those of the two refracted oscillations (in the crystal), which can be deter-

mined by Fresnel's construction (cf. p. 343).

Since now for = 0,
' = e', there will be no bifurcation of the incident waves

upon their passage into the crystal ; the azimuths ' and 0/ of the refracted waves

will, therefore, evidently coincide with the two singular directions (cf. p. 342) at

right angles to their common direction of propagation
' =

e
' =

;
we have now

seen on p. 343 that the singular directions are always at right angles, that is,

By formulae (c), the expressions (91) for the component-amplitudes a and ae

along the uniradial azimuths and e respectively will assume here the form

sin - cos tan e
'

\~~
sin

' - cos
'

tan e
"

_ sin - cos tan
'

sin 6e
' - cos 6e

'

tan
''

or, by the relation (D) between the two azimuths ' and 0/, upon the elimination

of the latter, the simple form
a = acos(0-0 '),

Replace a and ae by these and 6K and 6
lt K by their values in terms of 0' and

O from formulae (c) and (D) in formulae (A) and (B), and we have

.(p)

^ e'=2asin(0-0 ')
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The former expressions evidently give the following values for the resultant

amplitude and azimuth of the reflected oscillations :

and
,

e _
sin

f

cos(0 - ')(v
- v

'

l
~

On comparing these formulae with those (36, VII.) that hold on the surface of an

isotropic insulator, we observe that, aside from the (two) refracted waves with

common direction of propagation but of different azimuths of oscillation and

velocities of propagation in place of a single refracted wave, the reflected

oscillations are quite differently constituted in the two cases.

12. Show that for = ' formulae (F) and (G), Ex. 11, reduce to

and
ftl
= a -^% tan

t
= - tan

' = - tan 6.

Observe the similarity in form between these formulae and those (36, VII.) (cf. also

formulae (34) and (34A), Chapter VII.) for two adjacent isotropic insulators.

13. Examine the problem on reflection and refraction on the surface of a crystal

for the particular case, where +
/c

'=
ir/2.

There are evidently two angles of incidence 0, for the one of which

and for the other + C
' =

7r/*2 ; let us examine here the former case.

For K= Q formulae (87) assume here the form
= a sin cos20,

= -a cos0 __tan 6
'_

,

2cos0 'tan0 + tane
"

A '

sin
' 2a sin 9 sin2 0,

A '

cos
' = 2a cos 9_cos^ tan

2cos6>
' + tane /

cot0'
and formulae (86) the form

_ sin
'

~~

cos
'

sin 20 + tan e
'

cos'20'

is to be replaced by this particular value in formulae (91) for the component-

amplitudes a and ae along the two uniradial azimuths and e respectively.

Observe that these amplitudes remain here functions of the azimuth of the

incident oscillations
; it thus follows from formulae (95) that the resultant azimuth

1 of the reflected oscillations will vary for different values of 0. We have now seen

in Chapter VII. on isotropic insulators that for + 0' = ?r/2 the resultant azimuth of

the reflected oscillations was not a function of the azimuth of the incident ones ;

it thus follows that ordinary electromagnetic (light) waves incident at the angle
+ K

' = 7T/2 will be reflected as linearly polarized waves only when the reflecting

surface is that of an isotropic insulator (cf. also p. 376).

14. Examine the problem on reflection and refraction for the particular case,

where the waves pass from an isotropic into a crystalline medium and the normal

to the reflecting surface employed is parallel to one of the principal axes of the

crystal.
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Let us take here that cross-section of the crystal as reflecting-surface, whose

normal is parallel to its principal axis x' ( !){). The coordinate-axes x and x' in

Figure 40 will then coincide, whereas the angles between the other two pairs of

axes, y, y' and z, z', will become equal ; let us denote this common angle by w',

as indicated in Fig. 42 below.

For the given problem Maxwell's equations for the electric and magnetic
moments will retain their general form (55) and (56), only the relations (57) between

the electric moments and the electric forces in the crystal will assume simpler
form ; we evidently have here

cos (a/, x) = 1
, cos(x',y) 0, cos (a;', z)

= 0, ~\

cos(y',x) = 0, cos (y
f

, y) = cos a/, cos(y', 2) = cos (90 +
u>')

= - sin a/, V (A)

cos(z', x) = Q, cos (2', y) = cos (90
-

a/) = sin a/, cos(z', z) = cosw' J

(cf. Figure 42), and hence

D'n = .ZV, #'12= 0, />' =
(>, -I

D'n = 0, D'^=D3

' cosV + /Y sinV, D'w= ( /)2
'- A/) sin w' cos u/

Z>'31
= 0, D'gg = (D2

'- D3
'

)
sin a/ cos a/, IXj^/VsinV + ZVcosV

(cf. p. 355).

Replace the Z>"s by these values in formulae (57), and we have

Y' = [(/V cosV +D* sinV ) Q' + (A/ ~ A') sin
'

cos W '

A>']>

Z' *= [(^9'
- D) sin w' cos w' Q' + ( />.,' sin

2w' +D cos2w') /?']
4?r

within the crystal, where all quantities shall be characterized by the insertion of

the'.

The angles e
' and ee

'

are determined by the formula

v
"2

cos e
' = -7

* == (D)
v^'4

^'

(cf. formula (48)), where K', rjK', fK
'

denote the direction-cosines of oscillation in

the refracted waves K (K= O and e) referred to the principal axes x', y', z' of the

crystal, vK
f

their velocity of propagation and A', B', C' the constants of the

crystal (cf. formulae (30A)). The variables K', K̂ ', / can now be expressed as

functions of K', K', the variables introduced on pp. 358-360, and the direction

cosines between the two systems of coordinates x, y, z and x', y', z' (cf. Fig. 40) ;

for the given case, which is represented graphically in Fig. 42 below, the

former can now readily be expressed in terms of 6K', (f>K
f

,
and the above angle w',

as follows :

The component of the resultant amplitude a,/ along the xy-plane is

aK
'

cos 6K
'

and its component parallel to the z-axis a/ sin K
f

;

the component of aK
'

cos K
'

parallel to the x= a/-axis aK
'

cos K
'

sin
<f>K',

, ,
a K

'

cos 6K
'

, , y-axis aK
'

cos 6K
'

cos
<f> K',

,, a K'smdK
'

,, y'-axis
- aK

'

sin K
'

sin w',

, ,
aK

'
sin 8K

'

, ,
z'-axis a K

'

sin K
'

cos w',

, ,
aK

'

cos ^K
'

cos ^>K
'

, , y'-axis a/ cos K
'

cos K
'

cos a>'

and ,, aK
'

cos ^K
'

cos K
'

,, s'-axis aK
'

cos K
'
cos K

'

sin w'.
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The resultant component amplitudes will, therefore, be

aK
'

cos K
'

sin K
'

parallel to the x'-axis,

aK
'

(cos K
'

cos
<f>K

'

cos a/ - sin K
'

sin w') parallel to the y'-axis

and aK
'

(cos K
'

cos < K
'

sin w' + sin K
'
cos w') parallel to the z'-axis ;

hence K
'= cos K

'

sin </>/,

T;,/
= cos K

'

cos K
'

cos w' - sin K
'
sin a/,

/ = cos K
'

cos K
'

sin w' -f sin K
'

cos a/.

Formula (D) will thus assume here the following particular form in terms of

L'
4 cos20,/ sin'-fo,/ + fl'

4
(cos K

'

cos K
'

cos ta' - sin K
'

sin a/)
2

+ 6"4 (cos K
'

cos
<f>K

f

sin w' + sin K
'
cos w')

2

FIG. 42.

The direction-cosines XK', ^K', FK
'
of the normal nK to the wave-fronts of the

refracted waves /c (referred to the principal axes x', y', z
r
of the crystal) can

evidently be expressed here as follows in terms of K
' and w' :

\K
'= cos (nK

f

, x') = cos (?iK
'

} a;)
= cos

(<j>K
f + IT]

= - cos K',

/ZK
'= cos (nK

f

, y')
= cos (nK

f

, x) cos (y', x) + cos (?&/, y )
cos (y', y) + cos (w/, z) cos (y',

or, since here cos(y', #) = and COS(WK', z)=0 (cf. Fig. 42),

/ZK
'= cos (?IK', y )

cos (y', y )
= sin K

'

cos w',

and similarly 1/K
'= sin

<f>K
'
sin w'

<cf. Fig. 42).

By formulae (38) and (39) the azimuth K
'

of the refracted oscillations K is

determined by one of the principal axes of the ellipse intersected on the plane

by the ellipsoid AV + B'2
y'* + C'*z'2 =1.
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To express these equations in terms of the variables
<j>K', a/, etc. (referred to the

coordinates x, y, z), we observe that the following relations hold here between the

two systems of coordinates x, y, z and x', y', z' :

x' = x,

y'= y cos a/ - z sin a/,

z'=y sin w' + z cos co'

(cf. Fig. 42). Replace x', y', z' by these and X^, /ZK', J/K
'

by the above values (G)

in formulae (H), and we have

- cos K
'

a: + sin
<j>K'y= Q

~\
, .

')
2=l ; Jand

the azimuth 6K
' determined by one of the principal axes of the ellipse intersected by

these two surfaces (i) will thus be a function of
<f>K', a/ and the medium constants-

A', B', C'.

By formula (40) and the above values (G) for XK', /ZK ', vK
f we can write the

velocity of propagation of the refracted waves K here in the form

'2 '2 '2
) cos

2
^' + (A

'2 + C"2 ) sinV/cosV + (A'
2 + B'2

) sin
2
0,/sinV

I[(B'
2 - O /2

)cos
2
0,/

- (A'
2 - C^JsinV/cosV - (A'

2 - /2
)sinVK'sinVj2 \

\ + 4(4'
2 - C'2

)(B'
2 - <7'

2
)sin

2
K'cosVK'cosV/

- sin2 K'cosV) + C"2
(l
- sinV/sinV)

- sin20,/cosV)
-

(7'-(cos
2
0,/

- BJnV/cosVJp

+4(^ /2 - C'2)(B'
2 - C"2

)sin
2

K'cos
2

K'cosV

(for the choice of square root-sign see p. 345). On replacing here VK
'

by its value

from formula (69), we obtain an equation for the determination of K
'

as function

of 0, v, w' and the medium constants A', B', C', all of which are given ; for the

actual determination of
<J>K

'
see the ensuing particular cases of the given general

one, for which the given equation will assume simpler forms. After having thus

determined K', we could then express VK
'

by formula (j) in terms of 0, v, a/

and A', B f

,
G'.

Upon the determination of K
' and VK

'

in terms of 0, v, &/ and A
, B', C', we

could then express eK
'

by formula (r) in terms of the latter and K', which (0K
f

)

could be determined by formulae (i), as formulated above, as function of K', w'

and A', B', C', hence 0, v, w and A', B', C' (cf. above).

For the given case, where the medium O or that of the incident waves is

isotropic, we determine first by formulae (86) the uniradial azimuths and Oe as

functions of
</>, <f>K', 6K', and eK', then by formulae (91) the component amplitudes

a and ae along those azimuths as functions of a, 6 and Q K ,
hence a, 0, <f>, <j>K', 6K

r

and eK', and lastly the amplitudes A ' and A e
f

of the two refracted waves by
formulae (92) and the resultant amplitude ax and azimuth

l
of the reflected wave

by formulae (94) and (95) respectively as functions of a K ,
QK , <f>, <j>K', K

' and eK',

hence a, 0, <f>, <f>K', K
f and eK', and we then replace in the formulae found the

quantities K', K
' and eK

'

by the above values in terms of v, 0, a/ and A', B', C".

15. Examine, as in Ex. 14, the problem on reflection and refraction for the

particular case, where the waves pass from an isotropic into a crystalline medium
and either the principal axis y' (D2

f

)
or z' (D%) of the crystal coincides with the y

or z-axis respectively of the system of coordinates x, y, z, to which the reflecting

surface is referred (cf. also Fig. 40).
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16. Show for the particular case of Ex. 14, where a/ = 0, that is, where the

principal axes x', y', z' of the crystal coincide with the coordinate-axes x, y, z

(cf. Figs. 40 and 42), that formula (j), Ex. 14, assumes the simple form

vK
'2= iU'2 sin2 K

' + B'2 cos2 K
' + C'2

\/(
- ^'2 sin2 K

' - B'*cos2
<t>K

' + C'2
)

2
],

hence v '*=C'2 and ve
'2=A '2 sin2 e

' + B'2 cos2 <pe
'

..................... (A)

(cf. p. 345), and then determine K', VK', 6K
' and eK

'

in terms of 0, v and .4', 5', C",

and aK , 9K,
-4 K', a x and 0j in terms of a, 0, 0, v and A', B', G' (cf. Ex. 14).

Replace y</ and ve
'

by their values from formula (69) in formulae (A), and we

and .in. .!..

that is,
'

and e
' determined as functions of 0, v and .4', B', C

f

. By these

expressions for
' and e

' and by formula (69) we then find the following values

for VQ and ve
'
in terms of 0, v and -4', B', C' :

v '-C' and ve
'=

.
-- .............. . ........ ..(B)

Since now by assumption A'2 > B'2 > C'2
(cf. p. 344), it follows from Fresnel's

construction for the determination of the two singular directions of oscillation in

a crystalline medium that for all values of K
'

the one or longer principal axis of

the ellipse formed by the intersection of the plane

- cos
(f>K'x + sin

<f>K'y=

and the ellipsoid A r '2x2+ B'2y
2+ C'2z2 = I

,

the particular form assumed by formulae (i), Ex. 14, for o/ = 0, will coincide here

with the z-axis of our coordinates x, y, z, whereas the other principal axis will

evidently lie in the a:z/-plane, the plane of incidence; that is, K
' =

irl2 or

(K= and e). By Fresnel's construction all oscillations parallel to the z-axis

will now be propagated here with one and the same velocity (cf. p. 343) ; by
formulae (B) the oscillations that travel with one and the same velocity of

propagation for all values of K
'
are those of the ordinary refracted wave ;

it thus

follows that ' =
7r/2 and 0/ = 0.

Replace K', VK', and 6K
'

by the above values in formula (F), Ex. 14, for eK', and
we have

and cos e/ =

-(A"2 - B'2
) sin

2 d

\tB'4 + v2(A
'2 - B'2

)

2 sin2 - A '2
(A '* - B'2

)

2 sin4

hence e
'

and tftnff/
_

v2B'

that is, e
' and c/ determined as functions of 0, v and A', B'

,
G' (cf. Ex. 14).
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By the above values for K
' and eK

' formulae (86) evidently give

tan0 =:<x> and tan9e=

or 6 =
7T/2 and 6^= 0,

and hence formulae (91)
a = a sin 6 and ae

= a cos 6.

Next, replace K', K', eK', K and aK by the above values in formulae (92) for

the amplitudes.^' and A e
'

of the two refracted waves, and we have

sin sin 20
-^-7-^-7 TV

sin sm (0 + ')

2v2 cos0

, .
; nand A,=a<xm$

C" (\/?;
2 - C"2 sin2 + C" cos 0)

sin 20

= acos

Sin (0 + 0/) COS (0 e') "I 2~D'
S 'n $ ** V<

* ~ ^ '* Sin2 s in2 0e'

2?;
2 cos vV2 -(A'2 - B"2

)
sin2

r
t'
2 - A'* sm2

. -o-
n'

J-~772 DTo-
(
A '2 - ^'2

)
sm2

that is, ,4
' and A e

' determined as functions of a, 0, 0, v and A', B', C' (cf. Ex. 14).

Lastly, replace K', ^K', eK ', OK and aK by the above values in formulae (94) and

(95) for the resultant amplitude ax
and azimuth 1 of the reflected wave, and

we find

sin(0
-
0/) cos(0 + e') ^ sin \V - ^ /2 sin2 sin2 0/

sin(0 + 0/) cos(0 - 0/) + 20^ sin 0Vw2 -^'2 sin20sm2
e

'

=a 9
[

; -C"2 sin2 + C"cos0J

2 -j5'2)sin
2
0]cos0- JB'

- (A'
2 - '2

)
sin20] cos + '

Vpa - .4 /2 sin2 [y
2 + (^4

/2 -
B"*) sin2

0]-|

2

l
'

v/v2 -^'2 sin2 [>
2 + (^4

/2 - JS'2
) sin

2
0]J /

and

A"*- B'
-0e')+ ,

2 - J'2 sin20sin
2

e
'

sin (0
-

e') cos(0 + e')
- 2 ~ -4'2 sin2 sin2 e

'

= tan
2 - C"2 sin2 - C' cos

2 - C'2 sin2 + C' cos

- (A
'2 - sin2 0] cos + B' *Jv* -A'2 sin2 [?;

2 +U '2 - &*) sin2 0]

- (A'
2 - B'2

)
sin2 0] cos - '

x/t^^lP^sm2
[w

2 + (A'
2 -

'*) sin
2
0]

'

that is, !
and ^ determined as functions of a, 0, 0, v and ^4', B', C' (cf. Ex. 14).



EXAMPLES. 395

17. Show for the particular case of perpendicular incidence on the surface of

a crystal (Ex. 11), where the normal to the reflecting surface coincides with one

of the principal axis, the #'-axis (cf. Ex. 14), of the crystal, that the four unknown

quantities A ', A e', aa and l
are determined by the formulae

2
'

cos a/ sin (6 + w') (v
- C') (v + B')

- sin <*>' cos(0 + a/) (v+ C'} (v
-
B'}- ~

It is evident from Fresnel's construction that the two azimuths ' and e
'
of

oscillation in the crystal will be here
' = 7r/2-a/ and Oe'=-w' .............................. ....(A)

{cf. Ex. 16), where the relative position of the axes x, y, z and x', y', z' is that

represented in Figure 42.

For $= 0, hence
</>K

' = 0, formulae (A), Ex. 16, evidently give

v
' = C f and ve

' = B' ...................................... (B)

[For perpendicular incidence there will be, strictly speaking, two singular

directions of oscillation with one common direction of propagation within the

crystal, that is, there will be no bifurcation of the incident waves into ordinary
and extraordinary (refracted) ones. We cannot, therefore, well discriminate here

between the velocities of propagation of these two systems of oscillation, whether

the one or the other value correspond to the velocity of the ordinary or to that

of the extraordinary wave; for this reason these values for the velocities of

propagation can easily get interchanged according to the method of treatment

of the problems in question (cf. following examples)].

By formulae (A), formulae (E), Ex. 11, evidently assume here the simple form

o. = a sin (0 + u'),\

ae
= acos (0 + o/). /

Replace K', VK', and aK by the above values in formulae (F) and (G), Ex. 11,

and we find the formulae sought.

18. Show for = and w' = that the formulae of both Ex. ?s 16 and 17 for

the four unknown quantities A
f

, A e
f

,
a

a
and 6

1
reduce to

19. Examine the particular case of perpendicular incidence on the surface of a

crystal (Ex. 11), where either the principal axis y' (_>./) or z' (D3
f

)
of the crystal

coincides with the y or 2-axis respectively of the system of coordinates a?, y, z,

to which the reflecting surface is referred (cf. Fig. 40).
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20. Examine the problem on reflection and refraction on the surface of a

crystal for the particular case, where the principal axes of the crystal coincide

with the coordinate-axes x, y, z (Ex. 16) and the angle of incidence is so chosen
that + '=

7r/2.

By Ex. 16, where was arbitrary, we had

, , <7
/2 sin2

J3'
2 sin2

"**+'=+-
(A*-W*f

Replace here
'

by its present value
(^ ~^)>

an(l we find the following value,

for :

and hence the following values for
' and 0/ :

sin2
' =

^2+6, /2

B'*
and sin 2

e
' = -^

v'
2 -A'-2 + ti'*+C'2

'

Replace 0,
' and 0/ by these particular values in the more general formulae

of Ex. 16, and we find

,
U'2 -

e = 0, tan e/ =

"2
(i?

2+^'2 - '2 + C"2 )

and

21. Show for the particular case of reflection and refraction on the surface of a

crystal, where the principal axes of the crystal coincide with the coordinate-axes

x, y, z (Ex. 16) and the angle of incidence is so chosen that + 0/=:7r/2, that

is determined by the equation

......................... (A)

22. Examine the particular case of reflection and refraction on the surface of a

crystal, where the principal axes of the crystal coincide with the coordinate-axes

x, y, z (Ex. 16) and the angle of incidence is so chosen that the two uniradial

azimuths 91;0 and 61>e of the reflected oscillations coincide.
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Replace 910 and Ole by their values in terms of 0, K', K
' and eK

'

(cf. formulae

(86)) in the conditional equation 10
=

]e for the determination of 0, and we have_sin
'

sin(0-0 ')___
cos QQ sin (0

-
') cos (0 + ')

- tan e
'

sin2
'

_ sin Of sin (0
- 0/)

~~
cos 6g sin (0

- 0/) cos (0 + e')
- tan ee

'

sin2 e
'

(the particular angle of incidence determined by this equation was denoted by <J>

in text).

Next, replace in this conditional equation for
' and e

'

by their values ?r/2

and respectively for the given particular case w' (cf. Ex. 16), and we have

Bin(0-0
/

)___ . .

sin
(

- 0/) cos (0+ e')
- tan ee

'

sin2 e
''

hence sin (0- ')
=

or sin (0-0e')cos(0 + e')
- tan e

'
sin2 e

'= ......................... (B)

The former of these two conditional equations evidently gives either C" = v, which

corresponds to no dividing surface (with respect to the z = z' axis), or 0r=:0
'= 0,

hence
<f)e

' = Q, for which the azimuths 910 and le do not coincide, as we have

seen in Ex. 11 the left hand member of the conditional equation (A) then

becomes indeterminate (^ 0).

On replacing e
' and ee

'

by their values from Ex. 16 for the given case, w' = 0,

in the latter conditional equation (B), we can write it in the form

v-[v
2 - (A'

2 - B'2
)
sin20]cos =B'v2 -A'2 sin2 [v

2 + (A'
2 - B'2

) sin
2
0], ...... (c)

the equation sought for the determination of in terms of v and A', B', C' ;

observe that this equation does not contain the azimuth of oscillation 6 of the

incident waves.

Equation (c) gives

(
A /2 - B'2

) (A
'2B'2 - v2

)
sin6 + (A

'2 - B'2
) [2w

4 + (A
'2 - B'2

)
v2 + (A

'2 + B'2
)
B'2

] v
2 sin4

-
[v*+ 2 (A

"2 - B'2
)
v2 + (A'*- 2B'

2
) B'

2
] v

4 sin2 + (v*
- B'2) v

6= 0, (D)

an equation of the third degree in sin20. The actual solution of this equation
and the examination of its roots is of particular interest (cf. C. Curry :

" On the

Electromagnetic Theory of Reflection and Refraction on the Surface of Crystals."

Report of British Association, Bristol, 1897).

23. Examine the problem on reflection and refraction on the surface of the

uniaxal crystal A'= B' for perpendicular incidence.

The velocity of propagation VK
'

within the crystal will be given here by the

expression

(B'-
2 -C'2

)[cos
2
(x

f

, x) + cos2 (y', a;)]}

(cf. formula (40) and the expressions on p. 368 for X
, /Z ,

F ), hence

vQ
'2= B'2

[cos
2
(x', x) + cos'2 (y', x) + cos2 (z', x)~]

and ve
'2=C'2

[co&
2
(x', x) + cos2 (y', x)] + B'2 cos2 (z', x),

or, since cos2 (x', x) + cos2 (y

and ve
'2= C'2 sin2 (z', x) + B"2 cos2 (z

f

, x)

(cf. text to formulae (B), Ex. 17).

Replace v
' and ve

'

by these values in formulae (F) and (G), Ex. 11, which hold for

the corresponding case in biaxal crystals, and we obtain the formulae sought for

the determination of the four unknown quantities A Q', A e', % and 0j.
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24. Show for perpendicular incidence on the surface of the uniaxal crystal
B' = C' that the velocities of propagation of the refracted waves are given by the

expressions

V=C",
and ve

'z= A'2 sm'2 (x', x) + C"2 cos2 (a/, x).

We obtain the formulae for the four unknown quantities A ', A e', a and
lt on

replacing v
' and ve

'

by these values in formulae (F) and (o), Ex. 11.

25. Determine for the particular case, where the normal to the reflecting

surface coincides with the principal axis x' (D^) (cf. Fig. 40) of the uniaxal

crystal A' = B', the velocities of propagation and the angles of refraction of the two

refracted waves.

For A''= B' formula (j), Ex. 14, which holds for the corresponding case in

biaxal crystals, assumes the form

y/
2= I IB"

2
( 1 + sin2 0/sin

2 u'
) + C"2

(
1 - sin2 K

'

sin2 ')

(
B'2 - C'2 ) (cos

2
K
' + sin2 K

'

cos2 ')]>

hence vQ
"2= B'2

and ve
'2= (B'

2 - C"2
)
sin2 e

'
sin2 u' + C"2

.

Replace ?;
' and ve

'

by these values in the relation (69) between the 0's and the v*s,

and we find the following values for
' and 0/ in terms of 0, v, w' and

A', B', C':

C"2 sin2
and sin2 <be

= -^ ^ -^^-5 . 9 ,,
v2 ~(B'

2 - C /2
)sm

2 sm2 w

and hence the following values for VQ
' and ve

'

in terms of
(f>, v, w' and A', B', C' :

<2 =/?'2
,

7?e/2
=
v*-(B

f

*-C'*)8in*<l>Bin*u"

26. Determine the four unknown quantities A Q',
A e', a

a and l in terms of a, 6,

<j>,
v and A', B', C' (cf. Ex. 14) for the particular case of the preceding example,

where u/ = (cf. also Ex. 16).

27. For perpendicular incidence the formulae of Ex. 25 for the velocities of

propagation of the refracted waves assume the form

VD'
= B' and ve

' = C'

(cf. text to formulae (B), Ex. 17).

28. Show for the particular case, where the normal to the reflecting surface

coincides with the principal axis x' of the uniaxal crystal B' = C', that the

velocities of propagation and the angles of refraction of the refracted waves

are determined by the expressions "

and

Observe that these expressions do not contain the angle a/, a result we could have

anticipated, since for B' = C' the crystal has 110 principal axes in the yz plane.

Show also that
' = 7r/2 > 0/= 0,

, (A"
2 -

e' = and ' x
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We could also obtain these formulae directly, on putting B' = C f

in those of

Ex. 16, where o/ = 0. The formulae for the determination of the four unknown

quantities A ', A e
'

, j
and

l
will thus follow directly from those of Ex. 16, where

w' = 0, if we put there B' = C'. Observe that the expression for A '

undergoes

thereby no change, that is, it is immaterial here, as far as the amplitude of the

ordinary refracted wave is concerned, whether the crystal employed be a biaxal

or an uniaxal one.

29. To obtain the formulae for the particular case of the preceding example,
where the waves are incident at right angles to the surface of the crystal, we put
B'= C' and o/ = (cf. Ex. 28) in the formulae of Ex. 17, the corresponding case in

biaxal crystals, and we have

r

Observe that these formulae are identical to those that hold on the surface of

an isotropic insulator, through which electromagnetic waves are propagated in all

directions with one and the same velocity v' = C' (cf. Chapter VII.) ; it thus follows

that waves incident at right angles on the given surface of this uniaxal crystal will

be reflected and refracted as on the surface of an isotropic insulator (v'= C
f

).

30. Show that the formulae of Ex. 20 for the determination of the four

unknown quantities A Q', A e', at
and 6

l
assume the following form on the surface

of the uniaxal crystal A'= B' :

2

-4
'= a sin fl

A e =acos0
B' \vC' + W - B'* + G"2

]

tfe\

~
)
+ cos2 0[~-

, \v+L> J Li'C"

v- v
and tan 0, = - tan -=-,. . J= .

v2 + C'* VC' - B'\/v2 - B"2 + C"2

31. Examine the problem on reflection and refraction on the surface of the

uniaxal crystal A'= B' for the particular case, where the principal axes of the

crystal coincide with coordinate-axes x, y, z and the angle of incidence
<f>

is so

chosen that + 0/ = 7r/2 (cf. Ex. 21).

For A'= B' equation (A), Ex. 21, gives the following value for :

(cf. also Ex. 33).
siuV =^g^ .......................................... (A )

Replace by this value and put A' B' in the formulae of Ex. 16, which hold

for the corresponding case in biaxal crystals where was arbitrary, and we find

the following values for the four unknown quantities sought :

^4 n
' = asin^ , ,

i"i-C'*+B'C']

A'=

.
a,=a sin 6

and tan 0= oo hence d =
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32. Determine the quantities A ', A e', ax and 6l
for the particular case of

reflection and refraction on the surface of the uniaxal crystal B' G', where the

normal to the reflecting surface coincides with the principal axis x' of the crystal

and the angle of incidence
<f>

is so chosen that + '

?r/2.

For the complemental case, where + 0/ = 7r/2, <f>
was determined by the

quadratic equation (A), Ex. 21.

33. For the uniaxal crystal A'=B' equation (D), Ex. 22, for the determination

of
</> corresponding to the condition 10

= 6le reduces to

-
(v

4 - B"1

)
sin2 + v2 (v

2 -

hence si

that is, here there is only one value of
<f>

for which 10
= eie . Observe that this

value is that (A), Ex. 31, already found for the corresponding case, where
<f>
was

thereby determined that
<jf>
+ e

'

Tr/2. It thus follows that there is one and

only one angle of incidence 0, for which ordinary light will be reflected as

linearly polarized from the surface of the uniaxal crystal -A' = B' cut parallel to

its (one) optical axis (cf. p. 344), and that angle of incidence is thereby
determined that + e

'=
7r/2, that is, the angle of incidence and the angle of

refraction of the extraordinary refracted wave must make a right angle with each

other.

The unknown quantities A Q', A e', ax and 6
l will evidently be given here by the

same formulae as those that hold for the corresponding case, where + 0/= 7r/2

(cf. Ex. 31).

Observe that for the uniaxal crystal B' C' the equation for the determination

of retains here its general form (A), Ex. 21. v

34. For A'= B'= C' = v' confirm that the formulae of the above examples all

reduce to those (cf. Chapter VII.
)
that hold on the surface of the isotropic insulator,

through which electromagnetic disturbances are propagated in all directions with

one and the same velocity v'.

35. Examine the problem on total reflection on the surface of uniaxal crystals.

//>
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